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1. Abstract

Human genetic variation has enabled the identification of several key regulators of
fetal-to-adult hemoglobin switching, including BCL11A, resulting in therapeutic advances.
However, despite the progress made, limited further insights have been obtained to provide a
fuller accounting of how genetic variation contributes to the global mechanisms of fetal
hemoglobin (HbF) gene regulation. Here, we have conducted a multi-ancestry genome-wide
association study of 28,279 individuals from several cohorts spanning 5 continents to define
the architecture of human genetic variation impacting HbF. We have identified a total of 178
conditionally independent genome-wide significant or suggestive variants across 14 genomic
windows. Importantly, these new data enable us to better define the mechanisms by which
HbF switching occurs in vivo. We conduct targeted perturbations to define BACH2 as a new
genetically-nominated regulator of hemoglobin switching. We define putative causal variants
and underlying mechanisms at the well-studied BCL11A and HBS1L-MYB loci, illuminating the
complex variant-driven regulation present at these loci. We additionally show how rare
large-effect deletions in the HBB locus can interact with polygenic variation to influence HbF
levels. Our study paves the way for the next generation of therapies to more effectively induce
HbF in sickle cell disease and β-thalassemia.
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2. Introduction

During human development, there is a switch from a fetal form of hemoglobin (HbF), with the
beta-subunit encoded by the HBG1/2 genes, to the adult form of hemoglobin (HbA), with the
beta-subunit encoded by the HBB gene, that takes place shortly after birth - a process referred
to as the fetal-to-adult hemoglobin switch. Persistently increased production of HbF after
infancy can ameliorate clinical symptoms in common and life-threatening disorders arising from
HBB mutations, including sickle cell disease and β-thalassemia. While the ameliorating effect
of HbF in these hemoglobin disorders have been known for several decades,1 the underlying
regulation of HbF and approaches to target this process had remained unknown. Fifteen years
ago, initial genome-wide association studies (GWAS) revealed three regions of association with
HbF levels - the HBB locus on chromosome 11, the HBS1L-MYB locus on chromosome 6, and
the BCL11A locus on chromosome 2.2–4 These studies led to functional follow up that revealed
how BCL11A acted as a key and direct repressor of HBG1/2 transcription.5 Subsequently,
additional insights have emerged from the study of rare loss-of-function mutations impacting
BCL11A,6–8 transcriptional regulatory elements necessary for erythroid expression of this
factor,9,10 upstream regulators of BCL11A expression,11–14 and analysis of the mechanisms by
which BCL11A alters transcription.15–17 Suppression of BCL11A or its binding motif in the
HBG1/2 promoters using genome editing or gene therapy approaches has emerged as a
curative strategy for sickle cell disease and β-thalassemia.18,19 These initial studies have also
spurred further research to better define the mechanisms by which HbF is regulated in
humans.15,20,21

Despite the substantial progress in understanding HbF regulation, much of which has largely
relied upon studies in cell lines and mouse models, a number of fundamental questions about
how HbF is regulated in humans in vivo remain unanswered. For instance, are there additional
genetic variants underlying interindividual variation in HbF levels and how do these variants
act? What are the identities of causal variants at known loci impacting HbF levels and how do
they mechanistically function? How do common and rare variants impacting HbF levels interact
to modulate HbF levels? To address these and other fundamental questions, we have
performed the largest multi-ancestry genome-wide association study (GWAS) for HbF levels to
date, involving 28,279 participants from a range of global populations with varied ancestries
spanning five continents. Through this study, we have identified new loci impacting HbF levels
and defined putative target genes/mechanisms, examined how well-studied loci can actually
harbor distinct variation and mechanisms across different populations, and characterized the
interface between rare large-effect mutations and polygenic variation in impacting HbF levels.
These findings open the door for further insights on HbF regulation and future therapeutic
advances, including improved designs for therapies inspired by insights from
naturally-occurring human variation.
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3. Results

3.1. HbF meta-analysis
To perform a large-scale GWAS, we included 28,279 individuals from several distinct cohorts
with different ancestries (Fig. 1a, Table 1). The cohorts relied upon different selection strategies,
including unselected individuals from the population (Swedish, SardiNIA,2 INTERVAL,22 GTEx,23

BIOS24), individuals with sickle cell disease (Tanzania,25 Walk-PHaSST,26 OMG-SCD,27 REDS-III
Brazil28, St. Jude Sickle Cell Clinical Research & Intervention Program (SCCRIP)/Baylor29,30), or
individuals selected from a screened population (Thai, see Methods). Upon conducting the
GWAS, there was no inflation in test statistics noted (genomic inflation factor (λgc)=0.99,
linkage-disequilibrium score (LDSC) intercept=0.98) (Supplementary Fig. 1). We identified 178
conditionally independent signals associated with HbF levels in 14 windows (9 windows at
genome-wide significant threshold, p<5e-8, and 5 windows at the suggestive threshold,
p<1e-6) (Fig. 1b, Supplementary Table 1,2). We annotated these windows with genes
nominated by a combination of distance from a significant variant, long-range interaction data
linking regulatory elements to genes in erythroid cells (via promoter capture Hi-C), correlations
between gene expression and chromatin accessibility (RNA and ATAC-seq correlations) in
hematopoietic cells, and expression quantitative trait loci (eQTLs) from whole blood
(Supplementary Table 3). In addition to the previously characterized regions, we identified
regions near known HbF regulators that had not previously been identified by other
population-based genetic studies, including ZBTB7A and KLF1, as well as other regions that
did not harbor genes previously implicated in HbF regulation.

We next conducted ancestry-specific analyses (Fig. 1c,d,e, Supplementary Table 4), including
for individuals with African (AFR, n=3,963), European (EUR, n=22,882), and Thai (n=1,392)
ancestry and found largely conserved association windows at the major loci identified,
including at the BCL11A, HBS1L-MYB, HBB, and CTC1 loci. Windows nominating BACH2
were found to be significantly associated with HbF in the AFR and EUR populations
(Supplementary Table 5,6), PSME4 and ABCC1 in the EUR populations alone, and UTRN in the
Thai population alone (Supplementary Table 7). Some of the observed ancestral heterogeneity
might arise from low power as a consequence of small cohort size and/or reduced genetic
variation within specific populations.

3.2. SNP heritability and genetic correlations of HbF
For the whole-cohort analysis, SNP heritability estimated using the linkage disequilibrium
adjusted kinships (LDAK) model was 0.164 (SD 0.015). LD score regression (LDSC) produced a
similar estimate of 0.15 (SE 0.07). The EUR population summary results revealed a heritability
of 0.20 (SD 0.038) (LDSC, 0.098 (SE 0.05)), AFR at 0.31 (SD 0.23) (LDSC, 0.36 (SE 0.31)), and
the Thai population at 0.40 (SD 0.32) (LDSC, 0.9456 (SE 0.682)). It is important to bear in mind
that while the majority of EUR populations were unselected, the AFR populations were
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exclusively individuals with sickle cell disease, where a higher heritability for HbF has been
inferred.31 The Thai population was also selected with the extremes of a population distribution,
which may confound these estimates. Upon analysis of heritability enrichments for different
histone modifications or genomic regions, the major enrichments were seen in putative
enhancer elements suggesting SNPs that reside in and potentially alter regulatory elements
contribute most to the currently observed heritability in HbF (Supplementary Fig. 2a).

Given the well-powered insights from genetic analysis of blood cell phenotypes across
populations,32,33 we examined the extent to which genetic variation impacting HbF levels might
also have genetic overlap with these phenotypes (Supplementary Fig. 2b, Supplementary Table
8). A number of genetic variants impacting cell phenotypes spanning the white blood cell, red
cell, and platelet lineages all appeared slightly, but significantly, positively correlated with
higher HbF-associated genetic variants, with the exception of mean corpuscular volume (MCV,
rg = -0.18 (SD 0.08)) and mean corpuscular hemoglobin (MCH, rg = -0.15 (SD 0.09)) that were
negatively correlated, suggesting that red blood cell size tends to be reduced (slightly) with
variation that increases HbF levels, while counts of different blood cells tend to be increased.
Notably, the genetic correlations for MCV and HbF match the phenotypic association seen in
the Thai cohort of 1,323 individuals (rho = -0.55 (p < 2.2e-16)), and a more weak but consistent
phenotypic correlation with mean corpuscular hemoglobin concentration (MCHC, rho = -0.098
(p = 0.002)).

3.3. Cellular contexts for variation associated with HbF
We next wanted to gain global insights into the cell contexts for this variation and therefore
employed our recently described approach of Single Cell Analysis of Variant Enrichment
through Network propagation of GEnomic data (SCAVENGE)34 to identify relevant cell states
where the fine-mapped variants showed significant co-localization with accessible chromatin
across human hematopoiesis (with both bulk and single-cell assay for transpose accessible
chromatin by sequencing [ATAC-seq] data). We fine-mapped each window to identify a credible
set of potentially causal variants; half of the windows had 95% credible sets containing 10 or
fewer variants (Supplementary Table 9), that were primarily localized to introns (Supplementary
Figure 2c,d). We identified a strong enrichment in erythroid cells compared to other
hematopoietic cell types (Supplementary Fig. 3a,b). At single-cell resolution, using a
pseudotime projection of human erythropoiesis,35 we found a strong enrichment at the
mid-maturation of erythroid cells, peaking around the proerythroblast to basophilic erythroblast
stages (Fig. 1f). Given these enrichments, we sought to define co-regulated transcription factor
(TF) motifs. Spearman correlations between the SCAVENGE trait relevance score (TRS) and
chromVAR TF motif enrichment scores across erythroid cells were calculated (Fig. 1g,
Supplementary Table 10). Notably, KLF1 and GATA1 motifs were highlighted and both of these
transcription factors are critical in HbF regulation.36 Collectively these results highlight key
differentiation stages and regulatory networks involved in HbF-associated genetic variation.
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3.4. Identifying BACH2 as a genetically-nominated regulator of HbF
Having shown at a global level that much of the genetic variation impacting HbF levels mapped
to the intermediate stages of human erythropoiesis and to transcriptional regulatory elements,
we wondered whether new mechanistic insights could emerge from these findings. While a
number of previously undescribed regions were identified through our GWAS (Fig. 1b), a
notable region contained a lead variant within the gene BACH2 (rs2325259). This was
compelling, as BACH2 encodes a transcriptional factor that can compete with NFE2 and other
related proteins for binding to small Maf proteins and can thereby alter gene expression at a
number of loci.37 The complexes of NFE2 and NRF2 play a critical role in the transcriptional
regulation at the β-globin genes and in HbF expression, suggesting potentially relevant
mechanisms for the observed association.38–45 By fine-mapping, we identified two putative
causal variants (rs1010473 and rs1010474) in tight linkage disequilibrium with the lead variant
(D`>0.98, R2>0.97 in both EUR and AFR populations) that overlapped a region of accessible
chromatin in human hematopoietic stem and progenitor cells (HSPCs), whose accessibility was
rapidly lost with erythroid differentiation (Fig. 2a). We targeted this region using CRISPR/Cas9
genome editing to excise the full 0.6 kb element in primary adult human CD34+ HSPCs (Fig. 2b,
Supplementary Table 11). Three days following editing that excised the enhancer in ~40% of
alleles (Supplementary Fig. 4), we found that the expression of BACH2 was selectively reduced
(Fig. 2c), but importantly, several other genes in the topologically-associated domain
containing this regulatory element were not impacted (Supplementary Fig. 5). These findings
suggested that the removal of a variant-harboring regulatory element appeared to selectively
impact BACH2, which thereby might regulate HbF levels. To directly test this and given
challenges in effectively perturbing BACH2 by genome editing of HSPCs, we increased
expression of BACH2 in HSPCs through lentiviral expression (Fig. 2d) and fluorescence
activated cell sorted (FACS) the top (BACH2-GFPhi) and bottom (BACH2-GFPlo) 30% of GFP+

transduced cells (Fig. 2e-f) (Supplementary Fig. 6a). By segregating cells that either had a low
or high levels of GFP expression, which is linked on the same transcript to the human BACH2
cDNA through an internal ribosomal entry site, we found a dosage-dependent repression of
HbF levels as assessed by both measurement of HBG1/2 mRNA levels (Fig. 2g) and flow
cytometric assessment of cells with HbF present (Fig. 2h) (Supplementary Fig. 6b) with a
concurrent increase in HBB mRNA levels (Supplementary Fig. 6c). These observations held
true across erythroid differentiation (Supplementary Fig. 6d-e). These changes in HbF levels
were accompanied by only a slight delay in differentiation that was most notable in the cells
with higher BACH2 expression, as assessed by analysis of the cell surface markers CD235a
and CD71, as well as by morphological assessment (Fig. 2i) (Supplementary Fig. 7-8). While
further studies are needed to define underlying mechanisms for HbF regulation, these initial
findings demonstrate how through our GWAS, we have defined a previously undescribed
genetically-nominated factor, BACH2, that regulates HbF and which might prove to be an
important therapeutic target.
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3.5. Previously described associations at BCL11A and HBS1L-MYB result from multiple variants
that vary across ancestries
Significant advances in our understanding of how HbF is regulated have arisen from prior
genetic studies that have identified the BCL11A and HBS1L-MYB loci. However, despite
progress made in understanding the function of the genes within these loci, the precise causal
variants and the underlying mechanisms by which these variants act have remained unknown.
Indeed, while early studies had suggested that HbF-associated variation within the BCL11A
locus might impact an erythroid regulatory element,9 mapping of this enhancer has suggested
that the most potent elements that are necessary for gene expression within this enhancer
occur within regulatory motifs that are invariant in humans.10 Therefore, even in this well
understood case, the precise variants underlying this association signal that has motivated
therapeutic efforts have remained undefined. We reasoned that the increased power through
our large GWAS and the availability of data across multiple ancestry groups would provide an
opportunity to define causal variants in these previously identified regions.

Using conditional analyses at these loci, we identified 46 independent signals within 1 Mb of
BCL11A in a mixed ancestry analysis (chr2:59,450,520-61,554,467) (31 significant before
adjustment; then, 18 in AFR only analysis, 21 EUR only, 11 Thai only) (Fig. 3a) and 31
independent signals within 1 Mb of HBS1L-MYB (chr6:133,960,378-136,540,310) (21
significant before adjustment; then 14 AFR only analysis, 24 EUR only, 23 Thai only) (Fig. 3b).
Remarkably, at both loci, there were few independent signals that overlapped, suggesting
distinct mechanisms of variation at these loci across different ancestries (Fig. 3c, d,
Supplementary Table 12, Supplementary Fig. 9). We then examined how many of these variants
overlapped regions of accessible chromatin in HSPCs undergoing erythroid differentiation.46

While a number of overlaps were noted suggesting potential alteration of transcriptional
regulation at the BCL11A and HBS1L-MYB loci, there was an even further restriction of overlap
across ancestries (Fig. 3c, d). Interestingly, while the one fine-mapped variant that did
demonstrate overlap with accessible chromatin and across ancestries at the BCL11A locus
was the previously reported rs1427407 polymorphism,9 each ancestry group had a distinct set
of conditionally independent variants that would collectively impact BCL11A, suggesting
significant and previously unappreciated complexity in the genetic variation at this locus.
Similar observations were also present at the HBS1L-MYB locus, where functional
fine-mapping of causal variants has also been attempted with earlier and more limited genetic
data.47 These findings emphasize two critical concepts: (1) the signals at these loci are likely
attributable to multiple independent variants that collectively contribute to the robust variation
in HbF levels and (2) these loci were fortuitously identified in early studies that were conducted
in different ancestry groups, but these signals likely arose from distinct variants across
ancestries. An important implication of these findings is that multiplexed targeting of these loci
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may be an ideal approach, which would mimic nature, for more effective HbF induction than
current therapeutic approaches.19

3.6. Variable HbF phenotype in known rare deletions and common variant influence
While new insights have emerged from the study of population-based variation, a chasm in
human genetic studies of HbF has emerged between the findings from rare variant studies that
have highlighted large-effect structural and single nucleotide variants that are rarely found in
individuals, and more common polygenic variation, as we identify through our GWAS. The
design of the Thai cohort enabled us to assess both of these types of variation simultaneously,
as this cohort was selected from extremes of a screened population of ~86,000 individuals. We
found that a number of individuals with higher HbF levels harbored substantial increases that
were likely due to large effect variants. Using a variety of mapping approaches (see Methods),
we identified deletions in the cohort known to cause hereditary persistence of fetal hemoglobin
or variant forms of thalassemia (associated with high HbF) in individuals with elevated HbF (Fig.
4a, Supplementary Table 13). While a wide distribution was seen in HbF levels across any
specific deletion (Fig. 4b), we found that incorporation of polygenic variation (Supplementary
Fig. 10a, b) using a phenotype score stratified the impact on HbF levels for most of the
deletions we identified (Fig. 4b). Interestingly, we observed genetic interactions between the
rare deletions and the common variant polygenic scores for the Thai (δβ)0-thal, 3.48 kb Thai
(β)0, and the negative 10 deletion set, with borderline significance for Filipino-type β0-thal
(Supplementary Fig. 11). Remarkably, these deletions that demonstrated interactions with the
polygenic scores were those that maintained the region upstream of the δ-globin gene, which
we have suggested might be critical for HbF silencing by BCL11A through long-range
interactions (Fig. 4a).15,48 This nexus of common and rare variation we identify for HbF
illuminates a key opportunity as population studies expand in size, which is to decipher the
interactions between the full allelic spectrum impacting disease-relevant phenotypes. These
findings also suggest that current efforts to mimic such variation for therapeutic purposes or
target key regulators of HbF without accounting for polygenic background might result in more
limited or variable HbF induction than desired.
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4. Discussion

Tremendous progress in our understanding of HbF regulation and switching has emerged from
examining human genetic variation. However, the studies of genetic variation to date have
suffered from limitations. Population-based studies of common genetic variation have been
restricted in scale to several thousands of individuals at most and have typically been focused
on specific ancestry groups.25,49,50 Concomitantly, studies of rare individuals with substantially
elevated HbF levels have revealed rare genetic variation at the β-globin gene locus and in other
genes, including BCL11A, KLF1, and ZBTB7A, which leads to more considerable increases in
HbF levels.6,15,51,52 Here, by conducting the largest multi-ancestry GWAS of HbF levels to date
we have uncovered new loci underlying variation in HbF levels, including the identification of
BACH2 as a new genetically-nominated regulator of HbF. We have also defined how polygenic
variation can interact with rare large-effect alterations to modify HbF levels in a population
stratified across extremes of the HbF distribution. Importantly, the finding of interactions in
some cases suggests distinct biological and mechanistic overlap between pathways involved
in HbF induction, including the role of BCL11A in silencing HbF through long-range
interactions,15 which will be an important avenue for future mechanistic studies. These
observations might provide guidance for combination approaches to achieve optimal
therapeutic induction of HbF.

Even at extensively studied loci that are already the targets of therapeutic approaches,
including the BCL11A locus, there is substantial complexity, with many more
conditionally-independent causal variants than has been appreciated from prior smaller genetic
studies. Additionally, these causal variants appear to vary by ancestry, suggesting a fortuitous
mechanistic overlap resulting from distinct signals at each of the previously described loci at
BCL11A and HBS1L-MYB. These findings warrant further functional dissection, particularly
using systematic mapping and mutagenesis approaches that enable comprehensive
interrogation of regulatory elements at high-resolution53–55. Our findings not only motivate
further genetic and functional mapping at these well-studied loci, but also suggest that existing
therapeutic approaches could be substantially improved by mimicking the multiplexed
approach that nature has employed to alter HbF levels.

In summary, we have demonstrated how by studying the genetic basis of variation in HbF
levels across diverse populations, we could uncover unappreciated genetic variation and new
biological insights, including a role for BACH2 in regulating HbF. This highlights the importance
of conducting increasingly larger genetic studies involving diverse populations. This will enable
further insights into the genetic complexity of even seemingly well-understood phenotypes like
HbF and the additional mechanistic insights that will emerge are likely to be even more notable
in complex human diseases.
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5. Figures

Fig. 1 GWAS of HbF across global populations with enrichment of fine-mapped variants
in erythroid cells. | a, Population geography of included studies and associated sample
numbers. ✝, the Thai population had a proportion of individuals selected for elevated HbF and
thus is not a general population. *, cohorts that employed gene expression measurements. b,
Combined meta-analysis of fetal hemoglobin details several unexplored loci. Gene symbols
shown are the most likely impacted gene nominated using several approaches (Supplementary
Table 3). Window boxes are drawn over significant and suggestive signals identified via
conditional analysis (Methods). Colored shading represents significant windows (p<5e-8), while
gray represents a suggestive signal (p<1e-6). c, d, e, show ancestry specific analyses
conducted using MAMA (Methods) for African (AFR), European (EUR), and Thai ancestry
backgrounds, respectively. Areas of differential signal indicate potential ancestry-specific
effects on HbF, y-axis was limited to p>1e-100. f, SCAVENGE analysis using scATAC-seq data,
within the enriched erythroid population there is particular enhancement of the trait relevance
score (TRS) in the mid-late erythroid population. g, Spearman correlations between SCAVENGE
TRS and chromVAR TF motif enrichment scores across erythroid cells to identify co-regulated
transcription factor motifs.

Fig. 2 Defining BACH2 as a genetically-nominated regulator of HbF. | a, The BACH2 locus,
with sentinel variant rs* shown as a purple diamond, and LD R^2 colored from red (high) to
yellow (low). Two variants rs1010473 and rs1010474 display high LD (both in EUR and AFR
populations) with the sentinel and are positioned in a peak of accessible chromatin in HSC
cells, tracks of bulk ATAC-seq for erythroid relevant trajectories are shown below. b, HSC
chromatin accessibility around rs1010473 and rs1010474 and the two CRISPR– Cas9 guide
RNA pairs (ENH1 and ENH2) used to delete this region. sgRNA, single-guide RNA. c,
Expression of BACH2 transcript in bulk human primary CD34+ hematopoietic stem and
progenitor cells (HSPCs) three days after deletion of the BACH2 enhancer (n=6) compared to
AAVS1 editing (n=3). ENH1 and ENH2 gRNA results were combined due to similar editing
efficiencies. d, Schematic representation of lentivirus-mediated increased expression of BACH2
in HSPCs. Transduced HSPCs were sorted on the top and bottom 30% of GFP+ cells (GFPhi

and GFPlo, respectively) and subjected to erythroid differentiation and functional evaluation. e,
BACH2-GFP expression in FACS sorted populations across erythroid differentiation. Mean
fluorescence intensities are indicated. f, Relative BACH2 transcript abundance on days 7 and
13 of erythroid differentiation in transduced HSPCs. g, Proportion of HBG1/2 expression
relative to overall HBG1/2+HBB expression on days 7 and 13 of erythroid differentiation in
transduced HSPCs. h, Frequency of F-cells across erythroid differentiation in transduced
HSPCs quantified by intracellular staining of fetal hemoglobin (HbF). %HbF+ and HbF- are
indicated. i, Erythroid differentiation status of transduced HSPCs on days 6 and 10 of erythroid
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differentiation culture as assessed by surface expression of CD71 and CD235a. Note in (d-h)
Each data point is representative of individual transductions.

Fig. 3 Overlap of potentially causal variants at known HbF loci. | Comprehensive study of
the a, BCL11A and b, HBS1L-MYB loci shows many potential ancestry-specific causal effects
(diamond shaped points) overlapping with accessible chromatin at various cell stages of
human erythropoiesis. These regions are linked to other regions via erythroid promoter-capture
Hi-C interactions. Finemapped signals in the fixed-effects analysis are highlighted by a triangle.
Significant conditionally independent SNPs found in significant ATAC peaks are highlighted by
a colored circle. Colored ranges above ATAC tracks correspond to statistically significant
peaks. c, d, Overlap between ancestry groups of independent sentinel variants, those in
accessible chromatin and 95% credible set fine mapped variants in accessible chromatin are
shown at the c, BCL11A and d, HBS1L-MYB loci. Specific variants are described in
Supplementary Table 9.

Fig. 4 Stratification of impact on HbF levels by large-effect structural variants by
polygenic variation. | a, Rare deletions identified previously in individuals of Thai ancestry from
case studies are shown in relation to affected genes, on hg38 coordinates. These deletions
were identified in the included Thai population using a combination of mapping approaches. b,
Within each known deletion category, individuals carrying these deletions show variable effects
on HbF (%) levels and polygenic trait scores (PRS) derived from common single nucleotide
variation, low and high were determined by less than or greater than median global PRS value,
respectively.
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6. Supplementary Figures

Supplementary Figure 1. QQ-plots for meta-analysis and ancestry-specific analyses from
MAMA.

Supplementary Figure 2. a, Heritability enrichments from LDAK for 64 functional categories in
the BLD model. b, Genetic correlations between HbF with various red and white blood cell
parameters. c, Conditionally independent analysis revealed a number of potential lead variants
per locus, and after fine-mapping, 95% credible sets are shown. d, Functional consequences
of the fine-mapped variants are shown.

Supplementary Figure 3. a, UMAP projection SCAVENGE cell-stage enrichment results from
single cell ATAC-seq data. b, Data in bulk.

Supplementary Figure 4. Enhancer perturbations were quantified by qPCR and shown as a
percentage of total alleles in the bulk population. Plotted are wild-type alleles, inversions, and
deletions for the AAVS1 negative control and both enhancer deletion pairs.

Supplementary Figure 5. MDN1, CASP8AP2, and MAP3K7 transcript abundance normalized
to ACTB in the AAVS1 negative control and enhancer deletion samples.

Supplementary Figure 6. a-e, Lentivirus increased expression of BACH2 in primary human
CD34+ hematopoietic stem and progenitor cells sorted on the top (hi) and bottom (lo) 30% of
GFP+ cells subjected to erythroid differentiation. Each point represents an independent
transduction. a, BACH2 b, HBG1/2 and c, HBB transcript abundance across erythroid
differentiation in each sorted population. d, % HBB and HBG1/2 transcripts across erythroid
differentiation. e, Frequency of F-cells detected across erythroid differentiation.

Supplementary Figure 7. a-b, Lentivirus increased expression of BACH2 in primary human
CD34+ hematopoietic stem and progenitor cells sorted on the top (hi) and bottom (lo) 30% of
GFP+ cells subjected to erythroid differentiation. Each point represents an independent
transduction. a-b, Frequency of CD71-CD235a-, CD71+CD235a-, CD71+CD235a+,
CD71-CD235a+ cells on a, day 6 and b, day 10 of erythroid differentiation. a-b, Each point
represents an independent transduction.

Supplementary Figure 8. Lentivirus increased expression of BACH2 in primary human CD34+

hematopoietic stem and progenitor cells sorted on the top (hi) and bottom (lo) 30% of GFP+

cells subjected to erythroid differentiation. Cells were harvested on day 11 of erythroid
differentiation culture and prepared by cytospin. Cell morphology was assessed by May
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Grunwald-Giemsa staining and imaging on a Nikon II Eclipse E800 microscope at 60x
magnification. Shown is representative of three independent transductions across 30 fields.

Supplementary Figure 9. A zoomed locus plot of part of BCL11A intron 2 region from Figure
3a. Showing the well known BCL11A variant rs1427407, and previously described DHS sites at
+55, +58 and +62 kBp from the TSS9 in the context of ancestry and other potential causative
loci. Diamond shaped points show ancestry based conditionally independent signals. Erythroid
promoter-capture Hi-C interactions are shown, followed by ATAC-seq data for erythroid
lineages. Finemapped signals in the fixed-effects analysis are highlighted by a triangle.
Significant conditionally independent SNPs found in significant ATAC peaks are highlighted by
a colored circle. Colored ranges above ATAC tracks correspond to statistically significant
peaks.

Supplementary Figure 10. a, Calculated polygenic risk scores (PRS) perform well in HbF
discrimination in a test set b, PRS shows spread of distribution by deletion.

Supplementary Figure 11. Genetic interactions between common variant polygenic risk score
(PRS) and deletions on normalized HbF in Thai population in a Generalized Additive Model,
corrected for age, sex and principal components of ancestry. * p<0.05, ** p<0.01, *** p<0.001.
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7. Tables

Table 1. Details of the included populations in HbF meta-analysis.

Supplementary Table 1. Windows created based on whole-cohort meta-analysis conditionally
independent signals.

Supplementary Table 2. Conditionally-independent identified signals from whole-cohort
meta-analysis.

Supplementary Table 3. Basis for gene nominations for windows.

Supplementary Table 4. Signal windows across all populations.

Supplementary Table 5. Conditionally-independent identified signals from AFR population
MAMA meta-analysis.

Supplementary Table 6. Conditionally-independent identified signals from EUR population
MAMA meta-analysis.

Supplementary Table 7. Conditionally-independent identified signals from THAI population
MAMA meta-analysis.

Supplementary Table 8. Results of genetic correlation analysis.

Supplementary Table 9. Fine-mapped posterior probabilities from FINEMAP (see Methods) for
fixed-effects meta-analysis results.

Supplementary Table 10. Trait Relevance Score (TRS) and Transcription Factor Motif
correlation on the Erythroid trajectory of SCAVENGE.

Supplementary Table 11. Deletion sgRNA sequences.

Supplementary Table 12. Variant overlap in erythroid lineage accessible chromatin at known
loci.

Supplementary Table 13. Definitions of rare deletions in thai ancestry populations, coordinates
are in hg38.

Supplementary Table 14. Enhancer deletion qPCR primers.
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Supplementary Table 15. Gene expression qPCR primers.
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8. Methods

8.1. Individual GWAS study methods and quality control
An overview of the included studies is in Table 1. Most included samples had HbF measured in
the traditional way using high performance liquid chromatography, however two of the included
cohorts (BIOS and GTEx) derived the HbF phenotype from expression data (in TPM units) as a
ratio of gene expression (HBG1 + HBG2) / HBB. We found this to faithfully replicate expected
results from the traditionally measured HbF cohorts. In addition, we found the ratio approach to
traditionally measured approach in a EUR subset to be genetically correlated rg = 0.59 (SE
0.317). Selected studies were included from the BIOS; LifeLines DEEP (LL), The Leiden
Longevity Study (LLS_660Q), Netherlands Twin Register (NTR), PAN, The Rotterdam Study
(RS). The included Swedish and Thai populations are previously undescribed cohorts, and were
analyzed specifically for this study.

All GWAS summary statistics were lifted-over from their respective genome builds to reference
genome hg38. Alleles were flipped according to the hg38 build reference allele, and if neither
allele was present the variant was removed. Strand ambiguous and non-biallelic SNPs were
removed. Minor allele frequency was filtered to >=0.1%. RSIDs were assigned using dbSNP
version 144. All models included adjustment for at least, age, sex and top 10 principal
components of ancestry. In addition, for the SCD cohort analyzes there was appropriate
adjustment for SCD genotype and hydroxyurea use. In all cohorts, the same transformation
(inverse-normalization) was performed on HbF to produce a normalized response variable.

The Thai cohort was a unique study design, because from a large general population we
intentionally sampled individuals with HbF>2% for array genotyping in order to gain maximal
power and to identify individuals suitable for WGS with the intent of elucidation of structural
variation. Low HbF control samples were also included and the resultant HbF was transformed
using an inverse normalization transformation and checked for normality to represent a normal
distribution before GWAS analysis.

8.2. Meta-analysis
Fixed effects meta-analysis (FEMA) was performed using METAL r2020-05-05
(github.com/statgen/METAL). Multi-ancestry Meta analysis (MAMA) provides improved power
in meta-analysis of different populations with low type 1 error rates.56 We used MAMA per
population using LD reference panels derived from a combination of 1000 genomes data, and
Thai population whole genome sequenced (WGS) samples.

8.3. Identifying conditionally independent loci and fine-mapping
External LD reference panels were created from AllOfUs (v5) data for European (EUR,
n=51125), African (AFR, n=22837) and a combination of East-Asian, South Asian and Thai
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population-specific WGS data (EAS-SAS-THAI, n=3788). Some analyses used panels limited to
10,000 individuals for computational efficiency. GCTA-COJO v1.94.0 57 was used to identify
conditionally independent loci that became our LD-sentinel markers. Each LD-sentinel marker
was treated as a 1MBp window which was labeled with the nearest or, if known, biologically
relevant gene. Once each region was determined, fine-mapping was performed using
FINEMAP58.

8.4. Heritability and genetic correlation analyses
LD scores were established from external LD panels as described above, using maximum 1cM
window positions. LDSC was performed on summary statistics restricted to high quality,
HapMap 3 variants. LDAK was also used to estimate heritability using the thin and BLD models
appropriate for ancestry. Genetic correlations with blood cell traits were estimated using LDAK,
using the thin model. Summary statistics for blood cell traits were obtained from the published
BCX2 consortium summary statistics available at
http://www.mhi-humangenetics.org/en/resources/.

8.5. Enrichment and in-silico functional study
SCAVENGE34 was performed using fine-mapped statistics derived as described above. scATAC
data from 10 individuals representing 33,819 cells from 23 cell populations were used.59

Derivation and preparation of bulk ATACseq data is described elsewhere.46 Peak calling was
performed using MACS2. Hi-C data was acquired from a previously described dataset.60

8.6. Primary cell culture
CD34+ HSPCs were thawed into a maintenance medium consisting of a StemSpan II base
(StemCell Technologies), CC100 (StemCell Technologies), 50 ng/mL human TPO (Pepro Tech),
and 1% penicillin/streptomycin (Life Technologies).61,62 Cells treated with RNP complexes for
enhancer deletions were electroporated 48 hours after thawing and collected 72 hours
post-nucleofection. Cells treated with lentivirus were transduced 24 hours after thawing, sorted
72 hours after thawing, and moved to erythroid media 96 hours after thawing.

After the maintenance phase, CD34+ HSPCs were differentiated using the three-phase culture
system previously described.63,64 First, a base erythroid medium was created by supplementing
IMDM with 2% human AB plasma, 3% human AB serum, 3 U/mL heparin, 10 μg/mL insulin,
200 μg/mL holo-transferrin, and 1% penicillin/streptomycin. From days 1-7 in erythroid media,
this base medium was further supplemented with 3 U/mL EPO, 10 ng/mL human SCF, and 1
ng/mL IL-3. From days 7-12, this base medium was further supplemented with 3 U/mL EPO
and 10 ng/mL human SCF. After day 12, the base medium was supplemented with 1 mg/mL
total of holo-transferrin and 3 U/mL of EPO.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.24.23287659doi: medRxiv preprint 

https://paperpile.com/c/46YNRG/iFehq
https://paperpile.com/c/46YNRG/3yGM1
http://www.mhi-humangenetics.org/en/resources/
https://paperpile.com/c/46YNRG/i9ZQe
https://paperpile.com/c/46YNRG/CIA3V
https://paperpile.com/c/46YNRG/uGtwD
https://paperpile.com/c/46YNRG/erd9Z
https://paperpile.com/c/46YNRG/Dukfb+lvARX
https://paperpile.com/c/46YNRG/RmA0c+GHPd9
https://doi.org/10.1101/2023.03.24.23287659
http://creativecommons.org/licenses/by-nc-nd/4.0/


8.7. Electroporation of primary cells
Two days after thawing, RNP complexes were electroporated into CD34+ HSPCs using a P3
Primary Cell 4D-Nucleofector X Kit S on the Lonza 4D Nucleofector system. Complexes were
formed by combining 50 pmol of Cas9 nuclease (IDT) and 100 pmol total of sgRNAs
(Synthego). Cells were treated either with two pairs of guides targeting the putative BACH2
enhancer or a negative control targeting AAVS1 (Supplementary Table 11). Electroporated cells
were harvested three days post-nucleofection for genomic DNA and RNA extraction using the
AllPrep DNA/RNA Micro Kit (QIAGEN) according to kit instructions. Deletions, inversions, and
wild-type alleles were quantified in the bulk population using qPCR (Supplementary Table 14).

8.8. Lentiviral increased expression
The human BACH2 coding sequence was synthesized by Azenta and inserted into the HMD
lentiviral vector65. Lentiviral particles were produced as previously described.8 Briefly, 293T
cells cultured in DMEM supplemented with 10% FBS were co-transfected with packaging
vectors pVSVG and pΔ8.9, and the expression vectors HMD-empty vector or HMD-BACH2.
DMEM was replaced with erythroid differentiation base media 24 h later and supernatant
containing lentivirus were collected, filtered with a 0.45 μm filter, and concentrated by
ultracentrifugation (24,000 rpm, 2 h, 40C). Concentrated virus was used to transduce HSPCs in
the presence of 8 μg/mL polybrene (Millipore) by spinfection (2,000 rpm, 1.5 h, RT). Transduced
cells were sorted based on the top and bottom 30% of GFP+ cells by fluorescence activated
cell sorting (FACS) before erythroid differentiation and subsequent functional analyses.

8.9. RT-qPCR
RNA was collected from cultured cells using the RNAqueous Total RNA Isolation Kit (Invitrogen)
or the AllPrep DNA/RNA Micro Kit (QIAGEN) according to kit instructions. Isolated RNA was
inputted into the iScript cDNA synthesis kit (BioRad) following kit instructions in order to create
cDNA. RT-qPCR was run on the CFX96 Real Time System (BioRad) using iQ SYBR Green
Supermix (BioRad) following kit instructions. Primer pairs for RT-qPCR are listed by gene in
(Supplementary Table 15). Transcript levels are expressed as fold change using the
delta-delta-Cq quantification strategy and normalized to the expression of housekeeping gene
ACTB.

8.10. Flow cytometry
The frequency of F-cells in transduced HSPCs undergoing erythroid differentiation was
quantified as previously described.8 Briefly, cells were fixed in 0.05% glutaraldehyde for 10
min, permeabilized with 0.1% Triton X-100 (Life Technologies) for 5 min, and stained with an
anti-HbF APC antibody (Invitrogen) for 30 min. Cells were subsequently washed, acquired on
an Accuri C6 flow cytometer (BD Biosciences), and analyzed using FlowJo software (v.10.8.1,
BD Biosciences).
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To assess the impact of increased BACH2 expression on erythroid differentiation, transduced
HSPCs undergoing erythroid differentiation were stained with a combination of anti-CD71 APC
and CD235a PE (all from BD Biosciences) for 10 min. Stained cells were acquired on an Accuri
C6 flow cytometer and analyzed using FlowJo software.

8.12. Erythroid morphology assessment
The morphology of erythroid cells was assessed as previously described.66 Briefly, cells were
harvested from culture, washed, and cytospinned using a Shandon Cytospin 4 (Thermo Fisher)
onto polysine slides (Epredia). Slides were stained with May Grunwald and Giemsa stains (both
from Sigma-Aldrich) according to manufacturer’s recommendations. Stained slides were dried,
mounted with coverslips using permount (Fisher Scientific), and imaged on a Nikon II Eclipse
E800 microscope at 60x magnification.

8.11. CNV and structural variant calling
CNVs were called using an ensemble approach utilizing PennCNV, QuantiSNP, and iPattern
from array data. Subsequent results were limited to HBB and HBD genes and with additional
manual confirmation, individuals were identified as carrying one or more previously described
HPFH deletions (Supplementary Table 13). Structural variants were also called using manta in
197 WGS individuals configured for germline analysis.

8.12. Polygenic risk score calculation
We used LDpred2,67,68 to calculate a polygenic risk score based on summary statistics
excluding the target thai population data that we wished to predict results for. Analysis was
restricted to high quality HapMap3 SNPs. Infinitesimal modeling was performed, and
predictions were made upon the array calls from Thai population individuals. Linear regression
was then performed with predictions, age, sex, and ten principal components upon the
response variable of measured HbF with the predictions performing significantly (p<2e-16).
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Table 1. Details of the included populations in HbF meta-analysis.

Study

Inferred 
ancestry 
background Participants

Percent 
total Additional cohort notes:

St Jude AFR 526 1.86% SCD cohort

GTEx EUR 670 2.37% Expression ratio phenotype

walk_PHaSST AFR 408 1.44% SCD cohort

OMG_SCD AFR 253 0.90% SCD cohort

REDS-III_Brazil AFR 1589 5.63% SCD cohort

Tanzania AFR 1187 4.20% SCD cohort

Thai THAI 1392 4.93% Selected from extremes of distribution from larger population

Sardinia EUR 6305 22.33%

BIOS EUR 1872 6.63% Expression ratio phenotype

Sweden EUR 3031 10.73%

Interval EUR 11004 38.97%

Total ALL 28237
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Extended Data Figure 8
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