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      Neutrophils play a critical role in innate immune 
defense, but their improper activation also con-
tributes to tissue damage during autoimmune 
diseases such as rheumatoid arthritis ( 1 – 5 ). Neu-
trophils use several cell surface receptors to 
sense their environment including  �  2  integrins, 
immunoglobulin Fc receptors, various G pro-
tein – coupled (e.g., formyl peptide or chemokine) 
receptors, Toll-like receptors, and receptors for 
various proinfl ammatory cytokines. 

 Lymphocyte antigen receptors, Fc �  recep-
tors of mast cells, and Fc �  receptors of macro-
phages use a common receptor-proximal signal 
transduction machinery consisting of the sequen-
tial activation of Src family kinases, immuno-
receptor tyrosine-based activation motif (ITAM) 
containing transmembrane adapters, and the 
Syk or the ZAP-70 tyrosine kinase. Studies from 
other groups ( 6, 7 ) and our own unpublished 

observations indicate that neutrophil Fc �  re-
ceptors also use a receptor-proximal Src family –
 ITAM-bearing adaptor – Syk signaling pathway. 
We have recently shown that  �  2  integrins in 
neutrophils signal through a conceptually simi-
lar receptor-proximal pathway, using Src family 
kinases ( 8, 9 ), two ITAM-bearing transmem-
brane adapters (DAP12 and the Fc receptor  �  
chain) ( 10 ), and the Syk tyrosine kinase ( 11 ). 
We and others have reported similar ITAM-
based integrin signaling pathways in other cell 
types including macrophages ( 10 ), platelets ( 12 ), 
osteoclasts ( 13 ), dendritic cells ( 14 ), and microglia 
( 15 ). Collectively, integrins and Fc receptors in 
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  �  2  integrins and Fc �  receptors are critically involved in neutrophil activation at the site of 

infl ammation. Both receptor types trigger a receptor-proximal tyrosine phosphorylation 

cascade through Src family kinases and Syk, but further downstream signaling events are 

poorly understood. We show that phospholipase C (PLC)  � 2 is phosphorylated downstream 

of Src family kinases and Syk during integrin or Fc receptor-mediated activation of neutro-

phils. PLC � 2  � / �   neutrophils are completely defective in  �  2  integrin or Fc �  receptor-

mediated functional responses such as respiratory burst, degranulation, or cell spreading in 

vitro and show reduced adhesion/spreading in infl amed capillary venules in vivo. However, 

PLC � 2  � / �   neutrophils respond normally to various other agonists, including chemokines, 

bacterial formyl peptides, Toll-like receptor ligands, or proinfl ammatory cytokines, and 

migrate normally both in vitro and in vivo. To confi rm the in vivo relevance of these obser-

vations, the effect of the PLC � 2  � / �   mutation was tested in the K/B × N serum transfer 

arthritis model, which is known to require  �  2  integrins, Fc �  receptors, and neutrophils. 

PLC � 2 defi ciency completely protected mice from clinical signs and histological features of 

arthritis as well as from arthritis-induced loss of articular function. These results identify 

PLC � 2 as a critical player of integrin and Fc receptor-mediated neutrophil functions and 

the neutrophil-mediated effector phase of autoimmune arthritis. 
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rheumatoid arthritis. Serum of aff ected mice can trigger the 
eff ector phase of the disease in otherwise normal mice (serum 
transfer arthritis) ( 26 ), allowing a clear separation of the two 
phases of the disease. 

 Analysis of the K/B × N and other models of autoimmune 
arthritis revealed that innate immune mechanisms are of critical 
importance in the later eff ector phase of the disease ( 26 ). Sev-
eral studies using lineage depletion ( 27 – 29 ), genetic ( 30, 31 ), or 
combined genetic/reconstitution ( 32, 33 ) approaches indi-
cate that neutrophils play a critical role in the eff ector phase 
of various animal models of autoimmune arthritis. However, 
the molecular mechanisms of how neutrophils contribute to 
the disease are very poorly understood. 

 Several cell surface receptors have been shown to be in-
volved in the pathogenesis of autoimmune arthritis in mice. 
These receptors include Fc �  receptors such as Fc � RIII or 
Fc � RI ( 34 – 43 ) as well as members of the  �  2  integrin family 
( 44, 45 ). However, it is at present unclear how (e.g., through 
what intracellular signaling mechanisms) Fc receptors and in-
tegrins participate in the development of joint infl ammation. 

 The aforementioned results prompted us to test the role 
of PLC � 2 in various in vitro neutrophil functions as well as 
in the development of neutrophil-mediated autoimmune 
 arthritis in vivo. Our results indicate that PLC � 2 is critically 
involved in integrin and Fc receptor-mediated neutrophil 
functions as well as in the neutrophil-mediated eff ector phase 
of autoimmune arthritis. 

  RESULTS  

 PLC � 2 is the dominant PLC �  isoform 

and is phosphorylated downstream of Src family kinases 

and Syk in neutrophils 

 First, we tested the expression level of the two PLC �  isoforms 
in neutrophils and compared it to that in other cell types. As 
shown in  Fig. 1 A , PLC � 2 was expressed at comparable levels 
in WT murine neutrophils and splenocytes but at much lower 
levels in WT thymocytes.  In contrast, PLC � 1 was expressed 
in neutrophils at a much lower level than in the thymus or 
the spleen. Although these results suggested that PLC � 2 is 
the predominant PLC �  isoform in neutrophils, they did not 
allow the quantitative assessment of the relative expression 
of the two proteins in these cells. Hence, the expression of 
PLC � 1 and PLC � 2 was titrated against known amounts of 
recombinant Myc-tagged versions of the two proteins (Fig. 
S1 A, available at http://www.jem.org/cgi/content/full/jem
.20081859/DC1). Based on those studies, WT mouse neu-
trophils were estimated to contain 53  ±  26 ng PLC � 2 ( n  = 3) 
and 3.0  ±  1.2 ng PLC � 1 ( n  = 3) per 10 6  cells, indicating 
that the expression of PLC � 2 is  � 18-fold higher than that 
of PLC � 1 in these cells. The expression of the two isoforms 
was also tested in PLC � 2  � / �   neutrophils ( Fig. 1 B ). Although 
no PLC � 2 signal was observed in PLC � 2  � / �   cells, the ex-
pression of PLC � 1 was not aff ected by the same mutation. 
The specifi city of the antibodies used was also confi rmed by 
the blocking eff ect of isoform-specifi c PLC � -blocking pep-
tides (Fig. S1 B). Collectively, these results indicate than 

various hematopoietic lineages signal through a conceptually 
similar ITAM-based receptor-proximal tyrosine phosphory-
lation cascade (for review see reference  16 ). However, the 
signal transduction mechanisms downstream of this common 
receptor-proximal pathway are poorly understood. 

 Phosphoinositide-specifi c phospholipase C (PLC) enzymes 
catalyze the breakdown of the membrane lipid phosphati-
dylinositol-4,5-bisphosphate to inositol-3,4,5-trisphosphate 
and diacylglycerol, triggering a concomitant Ca 2+  signal and 
protein kinase C activation. Of the best known PLC isoforms, 
the PLC �  family is activated by G protein – coupled receptors, 
whereas the PLC �  family is activated downstream of tyrosine 
phosphorylation pathways. There are two known PLC �  iso-
forms: PLC � 1 is ubiquitously expressed, whereas PLC � 2 is 
preferentially expressed in the hematopoietic system. Genetic 
defi ciency of PLC � 1 leads to embryonic lethality, likely as a 
result of defective erythropoiesis and vasculogenesis ( 17, 18 ). 
In contrast, PLC � 2-defi cient mice are viable, their principal 
phenotype being a profound defect in B cell development 
and function ( 19 ). 

 Although PLC � 2 is activated by various Fc receptors, its 
possible functional role downstream of those receptors is rather 
controversial. Genetic defi ciency of PLC � 2 attenuates Fc �  
receptor-mediated degranulation of mast cells ( 19, 20 ) but 
it does not aff ect extracellular signal-regulated kinase (ERK) 
activation or cytokine production under the same conditions 
( 20 ). Although PLC � 2 is required for Fc �  receptor-triggered 
Ca 2+  signal in macrophages, PLC � 2  � / �   macrophages show 
normal phagocytosis of IgG-coated erythrocytes ( 20 ). The 
role of PLC � 2 in Fc receptor-mediated functions in other 
cell types such as neutrophils is presently unknown. 

 PLC � 2 is also activated by integrins but its role in integrin 
signal transduction is also controversial. Although a statistically 
signifi cant decrease of spreading was reported in PLC � 2  � / �   
platelets ( 21, 22 ), that diff erence only accounted for a 30% 
reduction of the  �  2  �  1  integrin-induced increase in cell sur-
face area ( 21 ) or a delayed kinetics and moderately smaller 
percentage of full spreading on an  �  IIb  �  3  integrin ligand sur-
face ( 22 ). Hence, PLC � 2 appears to be a modulator rather 
than a critical component of integrin signaling in platelets. 
In contrast, a recent study focusing on the role of Vav family 
proteins in neutrophils suggested that PLC � 2 downstream of 
Vav may be more directly involved in integrin signaling in 
these cells ( 23 ). 

 Rheumatoid arthritis is a severe chronic autoimmune dis-
ease aff ecting  � 1% of the human population ( 24 ). The disease 
is initiated by the emergence of autoreactive T cells (initia-
tion or immunization phase), which then trigger the second 
(eff ector or tissue destruction) phase, mediated in large part 
by cells of the innate immune system. These two phases are 
very clearly separated in the K/B × N arthritis model ( 25 ). 
This model is initiated by a transgenic autoreactive T cell re-
ceptor (KRN transgene) on the autoimmunity-prone MHC 
background from the NOD mouse strain. This initial phase 
leads to the generation of autoantibodies that trigger exces-
sive joint infl ammation and destruction resembling human 
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integrin ligand surface (poly-RGD) ( 11 ) triggered phosphory-
lation of PLC � 2. Importantly, this phosphorylation response 
was absent in cells lacking the Src family kinases Hck, Fgr, 
and Lyn ( Fig. 1 C ) or the Syk tyrosine kinase ( Fig. 1 D ). 
Murine neutrophils can also be activated in an Fc � RIII/Fc � RIV-
dependent manner by plating them on immobilized IgG 
immune complexes ( 46 ), leading to cellular responses that are 
dependent on Src family kinases and Syk (unpublished data). 
As shown in  Fig. 1 (E and F) , neutrophil activation by such 
immobilized immune complexes leads to phosphorylation 
of PLC � 2 in WT but not in Src family – defi cient ( Fig. 1 E ) 
or Syk-defi cient ( Fig. 1 F ) neutrophils. These results suggest 
that PLC � 2 is a downstream target of Src family kinases and 
Syk during both integrin and Fc receptor-mediated activation 
of neutrophils. 

 PLC � 2  � / �   bone marrow chimeras and neutrophil surface 

marker expression 

 Our next aim was to test the role of PLC � 2 in functional re-
sponses of neutrophils, using cells that are genetically defi cient 
of this phospholipase isoform. Because we (and others) have not 
been able to breed homozygous PLC � 2  � / �   mice (indicat-
ing a fertility defect in PLC � 2  � / �   males and/or females), the 
mutation was maintained in heterozygous (PLC � 2 +/ �  ) form. 
Even under such conditions, only 12% (rather than the ex-
pected 25%) of a total of 379 off springs from PLC � 2 +/ �    ×  
PLC � 2 +/ �   matings were found to be of the PLC � 2  � / �   geno-
type at weaning age, indicating a partial defect in survival of 
PLC � 2  � / �   embryos or newborn pups, which is likely a result 
of a lymphatic vascular developmental defect ( 47 ) similar to 
that seen in SLP-76  � / �   and Syk  � / �   mice ( 48 ). To overcome 
this problem, bone marrow transplantation was used to gen-
erate chimeric mice with a PLC � 2  � / �   hematopoietic system. 
To this end, recipient mice carrying the CD45.1 allele on 
the C57BL/6 genetic background were lethally irradiated and 
then injected intravenously with isolated PLC � 2  � / �   or con-
trol C57BL/6 bone marrow cells (both donor strains carry the 
CD45.2 allele). Repopulation of the neutrophil compartment 
by donor-derived cells was confi rmed by fl ow cytometric anal-
ysis of the donor-specifi c CD45.2 allele in peripheral blood 
leukocytes 4 – 5 wk after transplantation (Fig. S2, available at 
http://www.jem.org/cgi/content/full/jem.20081859/DC1). 
Using this approach, 99.3  ±  1.6% ( n  = 120) and 99.1  ±  
2.4% ( n  = 135) of peripheral blood neutrophils of WT and 
PLC � 2  � / �   bone marrow chimeras, respectively, were found 
to be of donor origin. Though quite laborious, this approach 
allowed us to signifi cantly increase the number of mice available 
for our studies. Unless otherwise stated, all of the following 
experiments were performed using such WT and PLC � 2  � / �   
bone marrow chimeras. 

 We next tested whether the defi ciency of PLC � 2 aff ected 
neutrophil development or expression of major cell surface 
receptors. Our bone marrow neutrophil isolation protocol 
yielded 12.1  ±  3.3  ×  10 6  WT and 12.4  ±  4.8  ×  10 6  PLC � 2  � / �   
neutrophils per mouse ( n  = 23; P = 0.62), indicating that 
the lack of PLC � 2 did not cause a quantitative change in 

neutrophils express both PLC � 1 and PLC � 2, although PLC � 2 
is the predominant isoform. Furthermore, the genetic defi -
ciency of PLC � 2 does not aff ect the expression of PLC � 1 in 
these cells. 

 We and others have previously shown that  �  2  integrins 
signal through a receptor-proximal tyrosine phosphorylation 
cascade involving Src family kinases and Syk ( 8 – 11 ; for re-
view see reference  16 ). Next, we tested whether PLC � 2 is 
also phosphorylated under these conditions and whether Src 
family kinases and Syk participate in this process. As shown 
in  Fig. 1 (C and D) , plating WT neutrophils on a polyvalent 

  Figure 1.     Expression and activation of PLC � 2 in neutrophils.  

(A) Expression of PLC � 2 and PLC � 1 in WT neutrophils compared with WT 

thymocytes and splenocytes. (B) Analysis of PLC � 1 and PLC � 2 expression 

in WT and PLC � 2  � / �   (PLC � 2 KO) neutrophils. (C and D) PLC � 2 phosphory-

lation in WT, Src family – defi cient (Hck  � / �  Fgr  � / �  Lyn  � / �  ; Src-family KO), or 

Syk  � / �   (Syk KO) neutrophils plated on a polyvalent integrin ligand (poly-

RGD)-coated surface (pRGD) or left in suspension (control). PLC � 2 phos-

phorylation was tested by immunoprecipitation (IP) followed by 

immunoblotting with antibodies against phosphotyrosine (PY). 

(E and F) Phosphorylation of PLC � 2 in neutrophils of the various geno-

types plated on an IgG immune complex – coated (IC) or control-treated 

surface. Immunoblotting for actin (A and B) and PLC � 2 (C – F) served as 

loading controls. Molecular mass values represent the estimated apparent 

molecular mass of the proteins. Each panel represents three to fi ve inde-

pendent experiments with similar results.   
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from PLC � 2  � / �   bone marrow chimeras failed to produce 
superoxide when plated on a fi brinogen-coated surface in 
the presence of TNF.  In a limited number of experiments, 
a similar defect was also seen in neutrophils isolated from 
intact (nonchimeric) PLC � 2  � / �   mice (Fig. S3 A, available at 
http://www.jem.org/cgi/content/full/jem.20081859/DC1). 
PLC � 2  � / �   neutrophils also failed to release the tertiary 
granule marker gelatinase ( Fig. 3 B ) or spread over the fi -
brinogen surface ( Fig. 3 C ) under identical conditions. A 
similar defect was seen when fi brinogen-adherent neutro-
phils were stimulated by other soluble proinfl ammatory 
agents, such as the TLR2 agonist lipopeptide Pam 3 CSK 4 , 
the TLR4-specifi c ligand ultrapurifi ed LPS, the GM-CSF 
cytokine, or the MIP-2 chemokine, which is the mouse ho-
mologue of human IL-8 ( Fig. 3 D ), in a CD18-dependent 
manner (Fig. S4). 

 Although both integrin ligation and a separate proinfl am-
matory stimulus is required for maximal activation of adher-
ent neutrophils under physiological conditions ( 49, 51 ),  �  2  
integrin – mediated in vitro neutrophil activation can also be 
achieved by plating the cells on surfaces coated with an engi-
neered polyvalent integrin ligand (poly-RGD) in the absence 
of any additional stimulus ( 11 ). PLC � 2  � / �   neutrophils failed 
to release superoxide when plated on a poly-RGD – coated 
surface ( Fig. 3 E ) and they did not spread on this polyvalent 
integrin ligand surface either ( Fig. 3 F ). 

 Collectively, PLC � 2 appears to be critically involved in 
the adhesion-dependent activation of neutrophils. Together 
with the fact that both TNF and the other soluble proinfl am-
matory agonists signal normally in PLC � 2  � / �   neutrophils in 
suspension ( Fig. 4 ), our results indicate that PLC � 2 is required 
for signaling by integrins rather than by receptors of the solu-
ble proinfl ammatory agents.  

 Neutrophils can also be activated by immobilized IgG 
immune complexes in an Fc � RIII/Fc � RIV-dependent man-
ner ( 46 ), mimicking their activation upon immune complex 
deposition in autoimmune diseases. Our unpublished obser-
vations indicate that this response also requires Src family ki-
nases and Syk. As shown in  Fig. 3 G , neutrophils isolated 
from PLC � 2  � / �   bone marrow chimeras failed to release super-
oxide when plated on immobilized IgG immune complexes. 
Similar results were also obtained using neutrophils isolated 
from intact PLC � 2  � / �   mice (Fig. S3 B). The PLC � 2  � / �   mu-
tation also abrogated gelatinase release ( Fig. 3 H ) and neutrophil 
spreading ( Fig. 3 I ) under such conditions. Hence, PLC � 2 is 
also critically involved in Fc �  receptor-mediated functional 
responses of neutrophils. 

 PLC � 2 is not required for signaling by G protein – coupled 

receptors, Toll-like receptors, and various cytokine receptors 

 Next, we tested integrin and Fc receptor-independent responses 
in PLC � 2-defi cient neutrophils. As a fi rst approach, the cells 
were stimulated with the nonphysiological protein kinase 
C – activating agent PMA, which is known to activate neutro-
phils even in the absence of important cell surface receptors 
such as  �  2  integrins ( 11 ) or intracellular signaling molecules like 

neutrophil production. PLC � 2  � / �   neutrophils also expressed 
normal levels of the Gr1 granulocyte diff erentiation marker 
( Fig. 2 A ) and the general leukocyte marker CD45 (Fig. S2).  
The PLC � 2  � / �   mutation did not aff ect expression of the  �  2  
integrin chain CD18 ( Fig. 2 B ) or the  �  chains of LFA-1 
(CD11a;  Fig. 2 C ) or Mac-1 (CD11b;  Fig. 2 D ). There was 
no diff erence between the two genotypes in cell surface stain-
ing with a common Fc � RII/Fc � RIII-recognizing antibody 
( Fig. 2 E ) or a monoclonal antibody against Fc � RIV ( Fig. 
2 F ). Collectively, genetic defi ciency of PLC � 2 did not aff ect 
neutrophil maturation or the expression of major cell surface 
integrins or Fc �  receptors. 

 PLC � 2 is required for integrin and Fc receptor-mediated 

neutrophil functions 

 In the following experiments, the role of PLC � 2 in in vi-
tro neutrophil functions was investigated. Robust neutrophil 
 activation can be achieved by plating the cells on an integrin 
ligand (e.g., fi brinogen)-coated surface in the presence of a 
soluble proinfl ammatory agonist, such as TNF ( 49 ), mimick-
ing activation of neutrophils adherent to the extracellular ma-
trix at the site of infl ammation. This response is completely 
dependent on  �  2  integrins both in humans ( 50 ) and mice 
( 11 ) (see Fig. S4). As shown in  Fig. 3 A , neutrophils obtained 

  Figure 2.     Expression of cell surface molecules on PLC � 2  � / �   neu-

trophils.  Expression of the indicated cell surface molecules on unstimu-

lated WT and PLC � 2  � / �   (PLC � 2 KO) bone marrow neutrophils was tested 

by fl ow cytometry. Each panel represents three to six independent experi-

ments with similar results.   
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that PLC � 2 is not required for distal steps of NADPH oxi-
dase activation. 

 Robust integrin and Fc receptor-independent neutrophil 
activation can also be triggered by the bacterial formyl-peptide 

Src family kinases ( 9 ) or Syk ( 11 ). PMA-stimulated PLC � 2  � / �   
neutrophils, which were isolated either from PLC � 2  � / �   bone 
marrow chimeras ( Fig. 4 A ) or intact PLC � 2  � / �   mice (Fig. 
S3 C), released normal amounts of superoxide, indicating 

  Figure 3.     Defective integrin and Fc receptor-mediated responses of PLC � 2  � / �   neutrophils.  (A – C) WT and PLC � 2  � / �   (PLC � 2 KO) neutrophils 

were activated by 50 ng/ml of murine TNF on a fi brinogen (Fbg)-coated surface and the resulting superoxide production (A), gelatinase release (B), 

and cell spreading (C) followed. (D) Superoxide release of fi brinogen-adherent neutrophils activated with 1  μ g/ml Pam 3 CSK 4 , 5  μ g/ml of ultrapurifi ed 

LPS (upLPS), 10 ng/ml of murine GM-CSF, or 100 ng/ml of murine MIP-2. (E and F) Superoxide release (E) and spreading (F) of neutrophils plated on 

a polyvalent integrin ligand (poly-RGD) – coated surface (pRGD) in the absence of any additional stimulus. (G – I) Superoxide release (G), degranula-

tion (H), and spreading (I) of neutrophils plated on immobilized IgG immune complexes (IC). Unstimulated control values were subtracted in A, D, 

and G. Error bars represent SD of triplicate readings. Bars, 50  μ m. Each panel is representative of three to fi ve independent experiments with 

similar results.   
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do not induce major functional responses (such as respiratory 
burst) in the absence of an integrin ligand surface (Fig. S4), 
their integrin-independent signaling capacity was assessed by 
testing up-regulation of cell surface integrins or activation of 
intracellular signaling pathways in suspension. TNF triggered 
normal up-regulation of the CD18 or CD11b integrin chains 
( Fig. 4 D ), normal phosphorylation of the p38 MAP kinase 
( Fig. 4 E ), and normal phosphorylation and degradation of 
the NF- � B pathway inhibitor I � -B �  ( Fig. 4 E ) in PLC � 2  � / �   
neutrophils. PLC � 2 was not required for phosphorylation of 
p38 MAP kinase or phosphorylation/degradation of I � -B �  

fMLP (which activates G i  protein – coupled receptors), especially 
if the cells are preincubated with the cytoskeletal disrupting 
agent cytochalasin B. Under such conditions, fMLP induced 
similar superoxide production ( Fig. 4 B  and Fig. S3 D for 
neutrophils from bone marrow chimeras and intact mice, 
 respectively) and gelatinase release ( Fig. 4 C ) from WT and 
PLC � 2  � / �   cells, indicating that PLC � 2 is not required for 
formyl peptide receptor signal transduction. 

 In the experiments presented in  Fig. 3 , adhesion-depen-
dent activation of neutrophils was tested in the presence of var-
ious soluble proinfl ammatory agonists. Because those agonists 

  Figure 4.     PLC � 2 is not required for integrin and Fc receptor-independent neutrophil functions.  (A) Superoxide release of WT and PLC � 2  � / �   

(PLC � 2 KO) neutrophils stimulated with 100 nM PMA. (B and C) Superoxide production (B) and gelatinase release (C) triggered by 3  μ M fMLP from neu-

trophils preincubated with 10  μ M cytochalasin B (CB). (D) Up-regulation of CD18 and CD11b upon activation of neutrophils by 50 ng/ml of murine TNF in 

suspension. (E and F) Phosphorylation of the p38 MAP kinase (p38) and of I � -B �  and degradation of I � -B �  upon activation of neutrophils with 50 ng/ml 

of murine TNF (E) or 1  μ g/ml Pam 3 CSK 4  (Pam 3 ; F). (G and H) Phosphorylation of ERK and the p38 MAP kinase upon neutrophil activation by 10 ng/ml of 

murine GM-CSF (G) or 100 ng/ml of murine MIP-2 (H). Molecular mass values represent the estimated apparent molecular mass of the proteins. Unstimu-

lated controls were subtracted in A and B. Error bars represent SD of triplicate readings. Each panel is representative of three to four independent experi-

ments with similar results.   
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triggered by the TLR2-specifi c ligand Pam 3 CSK 4  either ( Fig. 
4 F ). Similarly, GM-CSF ( Fig. 4 G ) and the MIP-2 chemo-
kine ( Fig. 4 H ) triggered normal ERK and p38 MAP kinase 
phosphorylation in PLC � 2  � / �   neutrophils. 

 Collectively, PLC � 2 is not required for integrin and Fc 
receptor-independent functional and signaling responses of 
neutrophils. These results also suggest that the defective ad-
herent activation of PLC � 2  � / �   neutrophils ( Fig. 3 ) is caused 
by a defect in integrin signaling rather than that of the soluble 
proinfl ammatory agonists. 

 Normal migration of PLC � 2-defi cient neutrophils 

 Neutrophil migration to the site of infl ammation is mediated 
by several cell surface receptors including chemokine/chemoat-
tractant receptors and  �  2  integrins. Our previous studies indi-
cated that Src family kinases and Syk, which are indispensable 
for various  �  2  integrin-dependent eff ector functions of neu-
trophils, are surprisingly not required for  �  2  integrin-medi-
ated cell migration ( 11 ). Those studies prompted us to test 
whether PLC � 2 participates in  �  2  integrin-mediated migra-
tion of neutrophils. 

 In an in vitro Transwell assay system, PLC � 2-defi cient 
neutrophils migrated as well as WT cells toward increasing 
concentrations of the bacterial tripeptide fMLP through a 
 fi brinogen-coated polycarbonate membrane of 3- μ m pore size 
( Fig. 5 A ).  Because neutrophil migration under these condi-
tions requires  �  2  integrins ( 11 ), these results indicate that 
PLC � 2 is not required for  �  2  integrin-mediated neutrophil 
migration in vitro. 

 A competitive migration assay during a sterile peritonitis 
( 11 ) was used to assess the in vivo migration of PLC � 2  � / �   
neutrophils. To this end, mixed bone marrow chimeras car-
rying both CD45.2-expressing PLC � 2 +/+  or PLC � 2  � / �   cells, 
along with CD45.1-expressing PLC � 2 +/+  cells in their hema-
topoietic compartment, were generated. After the induction 
of a sterile peritonitis by intraperitoneal injection of sterile 
thioglycollate broth, the percentage of neutrophils from the 
two donor genotypes was determined both in the bloodstream 
and the peritoneal infi ltrate. Any diff erence in this percentage 
between the two compartments would indicate diff erent mi-
gratory capacities of neutrophils from the two donor strains. 
When both CD45.1- and CD45.2-expressing donor cells 
were of PLC � 2 +/+  genotype, the percentage of CD45.2-
 expressing neutrophils did not diff er between the blood 
and the peritoneum ( Fig. 5 B ), indicating that the diff erent 
alleles of CD45 do not aff ect neutrophil migration. In con-
trast, when CD45.2-expressing PLC � 2  � / �   bone marrow cells 
and CD45.1-expressing PLC � 2 +/+  cells were present the per-
centage of PLC � 2  � / �   cells in the infl amed peritoneum was 
consistently higher than that in the bloodstream ( Fig. 5 B ). 
Calculation of the relative migratory capacity of neutrophils 
revealed that the accumulation of PLC � 2  � / �   neutrophils in 
the infl amed peritoneum was nearly twice more effi  cient than 
that of PLC � 2 +/+  cells ( Fig. 5 C ). These results are in sharp 
contrast with the severe reduction of migration of CD18  � / �   
neutrophils in a similar assay ( 11 ). Therefore, in contrast to 

  Figure 5.     Normal in vitro and in vivo migration of PLC � 2  � / �   

neutrophils.  (A) Migration of WT and PLC � 2  � / �   (PLC � 2 KO) neutrophils 

toward the indicated concentrations of fMLP through fi brinogen-coated 

transwell membranes of 3- μ m pore size. Error bars represent SD of 

duplicate readings. Data are representative of three independent experi-

ments. (B and C) Competitive migration of CD45.2-expressing and 

CD45.1-expressing neutrophils during thioglycollate-induced sterile 

peritonitis in mixed bone marrow chimeras. (B) Percentage of CD45.2-

expressing WT or PLC � 2  � / �   cells in the blood and the peritoneal lavage 

fl uid. Each data point represents an individual mouse. The thin diagonal 

line marks points of identical percentage of CD45.2 cells in the blood 

and the peritoneum. Error bars represent SD from three blood samples 

taken at different time points from the same mouse. The data are 

combined from two independent experiments. (C) Relative migratory 

capacity of CD45.2-expressing WT or PLC � 2  � / �   neutrophils relative to 

the CD45.1-expressing cells calculated from the data presented in B. 

Error bars represent SD of values from 6 (WT) or 18 (PLC � 2  � / �  ) indi-

vidual mice.   

CD18, PLC � 2 is not required for, or may even act as a nega-
tive regulator of, neutrophil migration into the infl amed peri-
toneum. Collectively, these results indicate that, similar to 
Src family kinases and Syk, PLC � 2 is not required for CD18-
dependent in vitro or in vivo migration of neutrophils. 
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to the vessel wall, no such eff ect was observed in PLC � 2  � / �   
chimeras ( Fig. 6 A ). fMLP also induced the spreading of WT 
leukocytes, as indicated by the fl attening (decreased diameter 
perpendicular to the vessel wall) of the cells adherent to the 
endothelium ( Fig. 6 B ). This spreading (fl attening) response 
was strongly reduced in PLC � 2  � / �   bone marrow chimeras at 
early time points ( Fig. 6 B ), although the mutant cells were 
able to partially fl atten down at later time points after fMLP 
stimulation. Besides these real-time in vivo microscopic ob-
servations, parallel cremaster muscle samples were subjected 
to whole mount histological analyses. Those studies again 
revealed that the fMLP-induced increase of the intravascu-
lar leukocyte count (an approximate measure of leukocyte 
adhesion) was signifi cantly attenuated in PLC � 2  � / �   bone 
marrow chimeras ( Fig. 6 C ), likely refl ecting the described 
adhesion/spreading defect ( Fig. 6, A and B ). Despite all these 
observations, the fMLP-induced increase of the number of 
perivascular leukocytes (an approximate measure of leukocyte 
extravasation) in PLC � 2  � / �   chimeras was similar to or even 
slightly higher than that in WT control chimeras ( Fig. 6 D ), 

 Leukocyte – endothelial interaction in fMLP-treated 

cremaster muscles in vivo 

 To gain further insight into the relationship between spread-
ing, adherent activation, and cell migration in neutrophils, as 
well as to exclude the possibility that the aforementioned dif-
ferences between the role of PLC � 2 in these processes (com-
pare  Figs. 3 and 5 ) stem from the very diff erent assay systems 
used, we performed the simultaneous analysis of leukocyte 
adhesion, spreading, and extravasation in individual venules 
of fMLP-superfused cremaster muscles of WT and PLC � 2  � / �   
bone marrow chimeras. As shown in Table S1 (available at 
http://www.jem.org/cgi/content/full/jem.20081859/DC1), 
there was no diff erence in the various hemodynamic param-
eters or total leukocyte counts between the two genotypes. 
The PLC � 2  � / �   mutation did not aff ect rolling fl ux fraction 
(36  ±  11 and 28  ±  12% in WT and PLC � 2  � / �   chimeras, 
respectively) or leukocyte adhesion ( Fig. 6 A ) under resting 
conditions either.  However, although local superfusion of 
the cremaster muscle of WT chimeras with 1  μ M fMLP trig-
gered a signifi cant increase in stable adhesion of leukocytes 

  Figure 6.     Leukocyte – endothelial interaction in fMLP-treated cremaster muscle venules in vivo.  (A and B) Intravital microscopy of postcapillary 

cremaster muscle venules superfused with 1  μ M fMLP. (A) Leukocyte adhesion in postcapillary venules of WT and PLC � 2  � / �   (PLC � 2 KO) bone marrow 

chimeras before (pre) and at the indicated time points during superfusion with fMLP. (B) Leukocyte spreading in fMLP-superfused cremaster muscle ve-

nules. The rate of spreading is expressed as the percent decrease in cell diameter perpendicular to the vessel wall. Mean and SEM of data obtained from 

four WT and fi ve PLC � 2 KO chimeras are shown. (C and D) Leukocyte adhesion (C) and extravasation (D) assessed by histological analysis of whole mount 

preparations of cremaster muscles of WT or PLC � 2 KO bone marrow chimeras superfused for 15 min in the presence or absence of 1  μ M fMLP. The mean 

and SEM are shown of the number of intravascular (C) and perivascular (D) leukocytes in 29 – 41 individual vessels per group from four WT and fi ve PLC � 2 

KO chimeras, each tested independently during the same day.   
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 PLC � 2  � / �   bone marrow chimeras are protected 

from macroscopic and microscopic signs 

of autoimmune arthritis 

 The role of PLC � 2 in integrin and Fc receptor-mediated 
neutrophil functions raise the possibility that PLC � 2 may be 

suggesting that transendothelial migration of leukocytes was 
not impaired in the absence of PLC � 2. These results again 
indicate that a defective adhesion/spreading response in the 
absence of PLC � 2 does not translate into impaired migration 
of leukocytes through the vessel wall. 

  Figure 7.     PLC � 2 is required for the development of K/B × N serum transfer arthritis.  WT and PLC � 2  � / �   (PLC � 2 KO) bone marrow chimeras 

(A – C and G) or intact (nonchimeric) mice (D – F) were injected with 400  μ l of arthritic (K/B × N) or nonarthritic control serum and the development of arthritis 

followed. (A) Photographs of the hind limb of mice of the indicated treatment and hematopoietic genotype 10 d after serum injection. Pictures are repre-

sentative of a total of 17 – 23 individual mice per group from eight independent experiments. (B and C) Hind limb clinical score (B) and ankle thickness (C) of 

mice of the indicated treatment and genotype. Error bars represent the SD of four to eight individual clinical scores or ankle thickness values from a single 

experiment repeated a total of eight times. (D – F) Hind limb photographs (D), clinical score (E), and ankle thickness (F) of intact (nonchimeric) mice of the 

indicated treatment and genotype. Data are from three mice per group tested in parallel. Error bars represent the SD of six individual hind limb values from 

three mice per group. (G) Histological analysis of the ankle joint of mice of the indicated treatment and hematopoietic genotype 4 d after serum injection. 

The photomicrographs on the right are enlarged from the highlighted areas in the middle pictures. Original magnifi cation, 5 × . Bars: (left and middle) 

200  μ m; (right) 100  μ m. Photomicrographs are representative of a total of four to six samples per group from three independent experiments.   
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treated PLC � 2  � / �  chimeras ( Fig. 7 A ), indicating a major role 
for PLC � 2 in the development of K/B × N serum transfer 
arthritis.  Quantifi cation of arthritis severity by clinical scoring 
revealed that arthritis became evident 2 d after injection 
of WT chimeras with arthritogenic serum, peaked between 
8 – 12 d, and started to cease afterward. Importantly, no signs of 
arthritis were seen at any time point in PLC � 2  � / �   bone mar-
row chimeras injected with arthritogenic K/B × N mouse se-
rum ( Fig. 7 B ). Treatment of WT chimeras with arthritogenic 
serum also triggered a robust increase of their ankle thickness 
( Fig. 7 C ), whereas the same treatment had no eff ect on ankle 
thickness of PLC � 2  � / �   chimeras ( Fig. 7 C ). Collectively, PLC � 2 
within the hematopoietic compartment is indispensable for 
the development of macroscopic signs of autoimmune arthri-
tis in the K/B × N serum transfer model. 

involved in the pathogenesis of infl ammatory diseases medi-
ated by these factors. To test this possibility, we turned to the 
K/B × N serum transfer arthritis model, an autoantibody-me-
diated model of the eff ector phase of autoimmune arthritis. 
Prior studies from other groups indicated that this model re-
quires neutrophils ( 27, 32, 33 ) as well as the presence of  �  2  
integrins ( 44 ) and Fc �  receptors ( 34 – 41 ). We have also con-
fi rmed the latter two conclusions (unpublished data). 

 To test the role of PLC � 2 in the K/B × N serum transfer 
arthritis model, WT or PLC � 2  � /    �    bone marrow chimeras 
were injected with arthritogenic K/B × N serum or normal 
serum from nonarthritic (KRN transgene negative) litter-
mates. Although WT bone marrow chimeras injected with 
arthritogenic serum developed severe arthritis of their hind 
paws ( Fig. 7 A ), no sign of the disease was seen in similarly 

  Figure 8.     PLC � 2 defi ciency protects from arthritis-induced loss of articular function.  WT and PLC � 2  � / �   (PLC � 2 KO) bone marrow chime-

ras (A and B) or intact (nonchimeric) mice (C) were injected with 400  μ l of arthritic (K/B × N) or nonarthritic control serum. 6 – 12 d after the serum 

injection, the mice were placed on a custom-made wire grid, flipped over, and the time for which the mice were able to hold on to the lower side 

of the grid was recorded. (A) Snapshots at the indicated time points from video captures of mice of the indicated treatment and hematopoietic 

genotype 10 d after serum injection. The snapshots are representative of a total of 165 – 263 individual measurements on 10 – 16 mice per group 

from four independent experiments. (B) Quantitative analysis of the articular function as represented by the percentage of the bone marrow 

chimeras from a given group to hold on to the grid for a given period of time after the grid has been flipped over from four independent experi-

ments. Error bars represent SEM of 10 – 16 individual  “ holding on curves ”  (obtained from 12 – 21 measurements on each single mouse between 

8 and 12 d after serum transfer). (C) Quantitative analysis of the articular function of intact mice of the indicated treatment and genotype. 

Error bars represent SEM of three individual holding on curves (obtained from 18 measurements on each single mouse between 8 and 12 d after 

serum transfer).   
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  DISCUSSION  

 Rheumatoid arthritis is a severe chronic disease aff ecting 
 � 1% of the human population. Although the therapy of the 
disease has signifi cantly improved during the last decades, it is 
still far from being solved. This is exemplifi ed by the still 
widespread use of the highly cytotoxic chemotherapeutic agent 
methotrexate, the severe cardiovascular complications of 
COX-2 inhibitors, or the tremendous costs and possible side 
eff ects (e.g., reactivation of silent tuberculosis) of anti-TNF 
therapeutics. Better understanding of rheumatoid arthritis at 
the molecular level would strongly facilitate the development 
of novel treatment strategies for the disease. 

 The experiments presented in this paper provide evidence 
for the role of PLC � 2 in the K/B × N arthritis model, one of 
the most widely used animal models of rheumatoid arthritis. 
A unique feature of this model is that its eff ector phase can be 
clearly separated from its initiation phase by transferring the 
serum of an arthritic K/B × N mouse to an otherwise nonar-
thritic recipient ( 26 ). Our experiments performed using this 
serum transfer model ( Figs. 7 and 8 ) indicate that PLC � 2 
participates in the eff ector phase of the disease. Furthermore, 
the fact that bone marrow chimeras with PLC � 2  � / �   hemato-
poietic system but PLC � 2 +/+  nonhematopoietic tissues are 
protected from K/B × N serum transfer arthritis indicates that 
PLC � 2 within the hematopoietic system is indispensable for 
disease development. 

 The eff ector phase of rheumatoid arthritis is mediated by 
several cell types, likely including various phagocytic lineages. 
To our knowledge, of those lineages only neutrophils have 
been consistently linked to the development of the infl am-
matory process in a diverse array of arthritis models and ex-
perimental approaches ( 27 – 33 ). Of the other phagocytes, 
liposome-mediated depletion studies suggested a pathogenetic 
role for macrophages ( 53 ), but another genetic study indi-
cated that certain macrophage subsets play a negative rather 
than a positive role in autoimmune arthritis ( 54 ). Although 
an elegant series of genetic and reconstitution studies indi-
cated the role of mast cells in the development of K/B × N 
serum transfer arthritis ( 55 ), another study using a diff erent 
genetic approach suggested that arthritis development may 
proceed normally in the absence of mast cells ( 56 ). Based on 
these results, the most likely explanation for our in vivo re-
sults is that PLC � 2 within neutrophils is required for the auto-
antibody-induced infl ammation process. The second most 
likely PLC � 2-dependent compartment would be the mast 
cell lineage, which also expresses PLC � 2 and may be acti-
vated through integrins and Fc �  receptors. However, because 
mast cells are long-lived radioresistant cells that survive a le-
thal irradiation in most tissues ( 57, 58 ), it is unlikely that our 
bone marrow transplantation approach was able to replace 
the majority of the recipients ’  mast cells. Hence, it unlikely 
that the complete defect of arthritis development in PLC � 2  � / �   
bone marrow chimeras is caused solely by the defi ciency of 
PLC � 2 in mast cells. 

 Several cell surface receptors have also been shown to 
participate in various models of autoimmune arthritis. Several 

 To exclude the possibility that these results were aff ected 
by the bone marrow transplantation approach (e.g., by the 
use of irradiation that by itself may aff ect the course of auto-
immune arthritis [reference  52 ]), the same experiments were 
repeated on a small cohort of intact (nonchimeric) WT and 
PLC � 2  � / �   mice. As shown in  Fig. 7 (D – F) , genetic defi -
ciency of PLC � 2 completely abrogated the development of 
all clinical signs of K/B × N serum transfer arthritis even in 
such nonchimeric animals. 

 We also performed histological analysis of the ankle joint 
of bone marrow chimeras of the various experimental groups. 
As shown in  Fig. 7 G , a robust leukocytic infi ltration of 
the periarticular tissues could be observed in WT chimeras 
injected with arthritogenic serum relative to those injected 
with nonarthritogenic control serum. Importantly, no such 
infi ltration was seen in PLC � 2  � / �   bone marrow chimeras 
injected with arthritogenic serum ( Fig. 7 G ), indicating that 
PLC � 2 is required for the development of microscopic signs 
of arthritis such as the accumulation of leukocytes in the peri-
articular space. 

 PLC � 2  � / �   bone marrow chimeras are protected 

from arthritis-induced loss of articular function 

 Besides the macroscopic and microscopic signs of infl ammation, 
arthritis also leads to severe impairment of articular function. 
This was assessed by testing the ability of the mice to hold on 
to the bottom of a horizontal wire grid similar to a regular 
wire cage lid. As shown in the video snapshots in  Fig. 8 A , 
although WT chimeras injected with control serum were 
able to hold on to the wire grid for the entire 20-s assay pe-
riod, WT chimeras injected with arthritogenic serum were 
not able to hold on for more than a few seconds, indicating 
an arthritis-induced loss of articular function.  Importantly, 
PLC � 2  � / �   bone marrow chimeras injected with arthrito-
genic serum had no diffi  culties in holding on to the wire grid 
for the entire assay period ( Fig. 8 A ). 

 To obtain a more quantitative assessment of joint function, 
this experiment was repeated several times on each individual 
mouse during the plateau phase of the disease, and the per-
centage of mice that were still holding on to the wire grid at a 
given time point was calculated analogous to Kaplan-Meier 
survival curves ( Fig. 8 B ). As shown in  Fig. 8 B , nearly 90% of 
control-treated WT chimeras held on to the wire grid until 
the end of the 20-s assay period. In contrast, only 40% of WT 
chimeras injected with arthritogenic serum held on for  > 1 s, 
and practically none of them did so for the entire assay period 
( Fig. 8 B ). Importantly, most of the PLC � 2  � / �   chimeras were 
able to hold on to the wire grid for the entire 20-s period irre-
spective of whether they were injected with arthritogenic or 
control serum ( Fig. 8 B ). In a small set of experiments, a similar 
protection from arthritis-induced loss of articular function was 
seen in intact (nonchimeric) PLC � 2  � / �   mice ( Fig. 8 C ), indi-
cating that the eff ect of PLC � 2 defi ciency on articular func-
tion was not aff ected by the bone marrow transplantation 
approach used. Collectively, mice lacking PLC � 2 are also pro-
tected from arthritis-induced loss of articular function. 
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absent. Similar studies on PLC � 2  � / �   bone marrow chimeras 
presented in this paper also indicate that severely defective 
adhesion ( Fig. 6, A and C ), and decreased and delayed spread-
ing ( Fig. 6 B ) do not necessarily hinder the extravasation 
( Fig. 6 D ) of leukocytes. Hence, transmigration of leukocytes 
through the vessel wall is possible even if adhesion and spread-
ing are severely defective. It is at present unclear how tran-
sendothelial migration occurs under these conditions. One 
possibility is that integrin-mediated spreading and fi rm adhe-
sion simply coincide with concomitant transmigration with-
out any major role of the former two processes in the latter 
one. Alternatively, spreading and adhesion may play dual 
roles by promoting transmigration, for example, through ar-
resting the leukocytes at the site of infl ammation, but also 
hindering it, for example, by holding leukocytes back by the 
adhesive process. If so, then a defective adhesion/spreading 
response would not have any major net eff ect on transmigra-
tion of leukocytes. Further studies will be required to reveal 
whether and how these or other mechanisms can explain 
transmigration of leukocytes when their spreading and/or ad-
hesion responses are severely impaired. 

 Along the same line of thinking, it is also interesting to 
note that our histological analyses showed a complete lack of 
leukocytic infi ltration in periarticular regions of PLC � 2  � / �   
bone marrow chimeras injected with arthritogenic K/B × N 
serum ( Fig. 7 G ). Based on the normal migration of PLC � 2  � / �   
neutrophils under other conditions ( Figs. 5 and 6 ), we hypothe-
size that the lack of PLC � 2 blocks the development of the 
infl ammatory environment (chemokines, cytokines, and in-
fl ammatory endothelium). Hence, the otherwise migration-
competent neutrophils are not attracted to the periarticular 
tissues in PLC � 2  � / �   bone marrow chimeras. 

 All of the experiments presented in this paper have been 
performed on inbred mice on the C57BL/6 genetic back-
ground. This strain is the most widely used genetically homo-
geneous mouse strain, allowing the most accurate comparison 
of our results with those from other investigators. However, 
we cannot exclude the possibility that PLC � 2 would be less 
critically involved in in vitro neutrophil functions and/or the 
eff ector phase of autoimmune arthritis on a diff erent genetic 
background. Such a phenomenon could theoretically be possible 
through compensation by either PLC � 1 or a PLC � -independent 
mechanism. Although it would be rather diffi  cult to predict 
the possible extent of compensation by the latter mechanism, 
studies showing that overexpression of PLC � 1 in PLC � 2  � / �   
cells was not able to restore B cell maturation ( 64 ) or the de-
velopment of multinucleated osteoclasts ( 65 ) suggest that there 
is relatively little room for functional compensation between 
the two members of the PLC �  family. 

 In addition to providing clear evidence for a role of PLC � 2 
in integrin-mediated neutrophil functions and the develop-
ment of K/B × N serum transfer arthritis, our studies also 
raise several novel questions that have yet to be addressed in 
the future. Although we hypothesize that the eff ect of the 
PLC � 2  � / �   mutation in vivo is a result of a neutrophil defect, 
this has yet to be confi rmed more directly, for example, by 

studies using mice lacking the Fc receptor common  �  chain 
( 34 – 37 ) or Fc �  receptor-specifi c ligand binding  �  chains 
( 36 – 42 ) indicated a critical role for Fc �  receptors in various 
autoimmune arthritis models ( 43 ). The role of  �  2  integrins 
( 44 ) or their putative ligands ( 44, 45 ) has also been shown in 
various autoimmune arthritis models. Somewhat surprisingly, 
however, there is very little information available on whether 
and to what extent signaling molecules downstream of these 
receptors play a role in the development of autoimmune ar-
thritis. In this context, it is particularly important that our 
study identifi es PLC � 2, a component of integrin and Fc re-
ceptor signal transduction, as a critical player of the eff ector 
phase of autoimmune arthritis. 

 Neutrophils are critical players of the innate immune re-
sponse but they also participate in tissue destruction during auto-
immune diseases ( 1 – 3, 5 ). Integrins and Fc receptors are two 
major groups of cell surface receptors participating in neutro-
phil activation at the site of infl ammation or bacterial invasion. 
We and others have shown that integrin and Fc receptor sig-
naling in neutrophils are both mediated by a receptor-proximal 
tyrosine phosphorylation cascade consisting of Src family ki-
nases, ITAM-bearing adaptor molecules, and the Syk tyrosine 
kinase ( 6 – 11 ; for review see reference  16 ) (unpublished data). 
In the present work, we identify PLC � 2 as a common down-
stream mediator of integrin and Fc receptor signaling in neu-
trophils ( Fig. 3 ). PLC � 2 thus appears to be a new member of 
a growing family of intracellular molecules participating in 
both integrin and Fc receptor signal transduction in these cells 
( 6 – 11, 59 – 61 ; for review see reference  16 ). In contrast, PLC � 2 
is dispensable for neutrophil activation through several other 
cell surface receptors such as G protein – coupled formyl pep-
tide or chemokine receptors, various cytokine receptors (TNF 
and GM-CSF), or members of the Toll-like receptor family 
( Fig. 4 ). Hence, PLC � 2 plays a specifi c role in signaling by a 
defi ned subset of neutrophil activatory receptors. 

 In addition to participating in adhesion-dependent func-
tional responses of neutrophils,  �  2  integrins are also required 
for the migration of the cells to the site of infl ammation. 
Somewhat surprisingly, although PLC � 2 is required for the 
former response ( Fig. 3 ),  �  2  integrin-mediated ( 11 ) neutro-
phil migration can occur in the absence of PLC � 2 ( Fig. 5 ). 
This is, however, in line with the normal migration of neutro-
phils lacking Src family kinases ( 11 ), Syk ( 11 ), ITAM-bearing 
adapters ( 10 ), or members of the Vav family ( 60 ) under CD18-
dependent conditions ( 11 ). Therefore,  �  2  integrins likely use 
other PLC � 2-independent pathways to support neutrophil 
migration to the site of infl ammation. 

 It is also puzzling how and to what extent spreading and 
extravasation can be dissected at the cellular and molecular 
level, given the generally accepted view that spreading and 
fi rm leukocyte adhesion precedes the transmigration of leuko-
cytes through the vessel wall. Our prior studies on leukocyte –
 endothelial interactions in Syk  � / �   bone marrow chimeras 
( 62, 63 ) indicated that a signifi cant level of extravasation is 
possible even when adhesion is severely reduced and leuko-
cyte spreading over the endothelium is apparently completely 
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ton, TX). Fc receptor  �  chain – defi cient ( Fcer1g  tm1Rav/tm1Rav , referred to as 

FcR �   � / �  ) mice ( 72 ) were purchased from Taconic. All these mice were 

backcrossed to the C57BL/6 genetic background for eight or more gen-

erations. WT control C57BL/6 mice were purchased from the Hungarian 

National Institute of Oncology. NOD mice, as well as a congenic strain 

carrying the CD45.1 allele on the C57BL/6 genetic background (B6.SJL-

 Ptprc  a ), were purchased from The Jackson Laboratory. Mice were kept in 

individually sterile ventilated cages (Tecniplast) in a conventional facility. 

All animal experiments were approved by the Semmelweis University (Bu-

dapest, Hungary) Animal Experimentation Review Board or the Regier-

ungspr ä sidium Karlsruhe (Karlsruhe, Germany). 

 To obtain bone marrow chimeras with PLC � 2  � / �   hematopoietic system, 

recipients carrying the CD45.1 allele on the C57BL/6 genetic background 

were lethally irradiated by 11 Gy from a  60 Co source using an irradiator 

(Gammatron 3; Siemens) and then injected intravenously with unfraction-

ated bone marrow cells from PLC � 2  � / �   or WT C57BL/6 control mice. 

On average, bone marrow cells of a single donor mouse were injected into 

10 – 12 recipients. 4 – 6 wk after transplantation, peripheral blood samples 

were stained for Gr1 and CD45.2 and analyzed by fl ow cytometry (see Flow 

cytometry). Repopulation of the hematopoietic compartment by donor-

 derived cells was defi ned as the percentage of CD45.2-positive (donor-

 derived) cells in the Gr1-positive granulocyte gate. Bone marrow chimeras 

were used 5 – 10 wk after the transplantation. 

 Neutrophil isolation.   Mouse neutrophils were isolated from the bone 

marrow of the femurs and tibias by hypotonic lysis followed by Percoll (GE 

Healthcare) gradient centrifugation as previously described ( 73 ). Neutrophil 

isolation was performed at room temperature using sterile and endotoxin-

free reagents. Cells were kept at room temperature in Ca 2+ - and Mg 2+ -free 

medium until use (usually less  < 30 min) and prewarmed to 37 ° C before 

activation. Neutrophil assays were performed at 37 ° C in Hank ’ s balanced 

salt solution (Invitrogen) supplemented with 20 mM Hepes, pH 7.4. 

 Flow cytometry.   For neutrophil studies, isolated neutrophils, peripheral 

blood samples, or peritoneal lavage fl uids were stained with PE-conjugated 

anti-Gr1 (RB6-8C5), FITC-conjugated anti-CD45.2 (clone 104), bioti-

nylated anti-CD11b (M1/70), or unconjugated antibodies against CD18 

(C71/16), CD11a (M17/4), Fc � RII/III (2.4G2), or Fc � RIV (9E9; obtained 

from J. Ravetch, Rockefeller University, New York, NY) ( 74 ). To identify 

KRN transgene-positive mice, peripheral blood samples were labeled with 

FITC-conjugated anti-CD4 (RM4-5) and PE-conjugated anti-TCR V � 6 

(RR4-7) antibodies. Unconjugated antibodies were visualized with FITC-

conjugated anti – rat IgG whereas biotinylated anti-CD11b was visualized with 

streptavidin-Cy3 (Jackson ImmunoResearch Laboratories). Unless otherwise 

stated, all fl ow cytometry antibodies and their isotype controls were purchased 

from BD. All staining was performed in the presence of 2% FCS (Invitrogen). 

Samples were fi xed in FACS Lysing Solution (BD) and analyzed on a FACS-

Calibur (BD) using CellQuest software (BD). Neutrophils and CD4-positive 

T cells were identifi ed based on positive labeling for Gr1 and CD4, respec-

tively, along with their typical forward- and side-scatter characteristics. 

 In vitro functional assays.   Adhesion-dependent activation was performed 

by stimulating murine neutrophils with 50 ng/ml of recombinant murine 

TNF (PeproTech), 1  μ g/ml Pam 3 CSK 4  (EMC Microcollections), 5  μ g/ml 

of ultrapurifi ed LPS (InvivoGen), 10 ng/ml of recombinant murine GM-CSF 

(PeproTech), or 100 ng/ml of recombinant murine MIP-2 (PeproTech) 

while adherent to a plastic surface coated with 150  μ g/ml of human fi brino-

gen (MP Biomedicals) as previously described ( 10, 11 ). Integrin-mediated 

activation in the absence of another soluble stimulus was achieved by plating 

neutrophils on surfaces precoated with 20  μ g/ml of engineered polyvalent 

integrin ligand peptide (poly-RGD; F5022; Sigma-Aldrich) Neutrophil 

activation by immobilized immune complexes was achieved by plating the 

cells on immobilized HSA – anti-HSA (both obtained from Sigma-Aldrich) 

immune complexes without any additional stimulus as previously described 

( 46 ). Activation of neutrophils in suspension was performed in Mg 2+ -free 

lineage-specifi c deletion of PLC � 2 in neutrophils. The same 
holds true for whether our in vivo phenotype is indeed caused 
by an integrin and/or Fc receptor signaling defect and whether 
PLC � 2  � / �   neutrophils are indeed capable of migrating to the 
site of infl ammation during a full-blown K/B × N serum trans-
fer arthritis. Although our studies strongly implicate PLC � 2 in 
the eff ector phase of autoantibody-mediated arthritis, its con-
tribution to other aspects of the disease have yet to be tested, 
for example, using the TNF-mediated human TNF-trans-
genic Tg197 ( 66 ) or the IL-17 – mediated SKG point mutant 
( 67, 68 ) models. It is also unclear whether the lipase activity 
and/or other structural features of PLC � 2 contribute to its 
role in neutrophil functions in vitro and arthritis development 
in vivo. This, and the reason for why PLC � 1 is apparently not 
able to compensate for the lack of PLC � 2, will need to be 
tested by reexpression of various PLC � 2 mutants and/or 
PLC � 1 in PLC � 2  � / �   bone marrow cells, for example, by 
using a retroviral reconstitution strategy ( 10 ). Finally, the role 
of PLC � 2 in the various aspects of antimicrobial functions of 
leukocytes (such as phagocytosis by myeloid lineage cells) and 
its relationship to that of Src family kinases and Syk has yet to 
be tested in more detail. 

 Collectively, we found that PLC � 2 is a central compo-
nent of integrin and Fc receptor signal transduction in neu-
trophils, linking the receptor-proximal Src family – ITAM 
adaptor – Syk cascade to functional responses of these cells. 
Our results also identify PLC � 2 as a critical player of the 
 eff ector phase of autoimmune arthritis, most likely through 
its role in integrin and Fc receptor signaling of neutrophils. 
These studies provide novel insight into the cellular and 
 molecular mechanisms of autoimmune infl ammation and may 
eventually point to novel targets of future therapies of major 
human diseases such as rheumatoid arthritis. 

 MATERIALS AND METHODS 
 Animals.   Heterozygous mice carrying a deleted PLC � 2 allele ( PLCg2  tm1Jni , 

referred to as PLC � 2  �  ) ( 19 ) were obtained from J. Ihle (St. Jude Children ’ s 

Research Hospital, Memphis, TN). Because of the limited fertility and 

survival of homozygous PLC � 2  � / �   mice, the mutation was maintained in 

heterozygous form by a PLC � 2 +/ �    ×  PLC � 2 +/ �   breeding strategy. Off -

springs were genotyped by allele-specifi c PCR reaction from tail DNA using 

5 � -GCCTCTGCACAGCACACATATGG-3 �  WT-specifi c and 5 � -CAA-

GGTGAGATGACAGGAGATCC-3 �  mutant-specifi c forward primers 

along with the 5 � -TTCACCGCATCCTCCTTTGAGTCC-3 �  common 

reverse primer. Triple Src family – defi cient ( Hck  tm1Hev/tm1Hev  Fgr  tm1Hev/tm1Hev  -

Lyn  tm1Sor/tm1Sor , referred to as Hck  � / �  Fgr  � / �  Lyn  � / �  ) mice ( 69 ) were obtained 

from C. Lowell (University of California, San Francisco, San Francisco, CA) 

and kept as triple homozygous mutants. Mice carrying the  Syk  tm1Tyb  muta-

tion ( 70 ) (referred to as the Syk  �   allele) were obtained from V. Tybulewicz 

(National Institute for Medical Research, London, UK). The Syk  �   mutation 

was maintained in heterozygous form and used to obtain Syk  � / �   neutrophils 

by fetal liver transplantation as previously described ( 11 ). Mice carrying the 

KRN T cell receptor transgene ( 25 ) were obtained from D. Mathis and 

C. Benoist (Harvard Medical School, Boston, MA) and maintained in hetero-

zygous form by mating with C57BL/6 mice. KRN transgene-positive mice 

were identifi ed by fl ow cytometry (see Flow cytometry) based on the high 

percentage of V � 6 TCR-expressing cells among CD4-positive T cells ( 25 ). 

Complete CD18-defi cient ( Itgb2  tm2Bay/tm2Bay , referred to as CD18  � / �  ) mice 

( 71 ) were obtained from A. Beaudet (Baylor College of Medicine, Hous-
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migration of neutrophils into the lower compartment during a 60-min pe-

riod was assessed by an acid phosphatase assay as previously described ( 11 ). 

 A competitive migration assay during sterile peritonitis in mixed bone 

marrow chimeras ( 11 ) was used to assess in vivo migration of neutrophils. To 

this end, bone marrow cells of PLC � 2  � / �   mice on the C57BL/6 genetic 

background (i.e., carrying the CD45.2 allele) were mixed with bone mar-

row cells from congenic mice expressing CD45.1 on the C57BL/6 genetic 

background at varying ratios ranging from 10 to 70% of CD45.2-expressing 

cells. This mixed cell suspension was injected intravenously into lethally ir-

radiated CD45.1-expressing recipient mice, giving rise to mixed bone mar-

row chimeras carrying CD45.2-expressing PLC � 2  � / �   and CD45.1-expressing 

PLC � 2 +/+  hematopoietic cells. To exclude any eff ect of the diff erent CD45 

alleles on cell migration, a few control chimeras were generated in a similar 

fashion but using PLC � 2 +/+  (intact C57BL/6) mice as the CD45.2-express-

ing donor strain, giving rise to mixed chimeras with CD45.1- and CD45.2-

expressing PLC � 2 +/+  hematopoietic cells. 5 – 8 wk after transplantation, the 

mixed bone marrow chimeras were injected intraperitoneally with 1 ml 

of 3% thioglycollate broth (Heipha Diagnostics). Blood was taken directly 

before as well as 2 and 4 h after the injection, and the peritoneal cavity was 

lavaged at 4 h. The relative percentage of CD45.1- and CD45.2-expressing 

neutrophils in the peripheral blood and peritoneal lavage samples was deter-

mined by fl ow cytometry in the Gr1-positive granulocyte gate. Relative mi-

gration of neutrophils of the CD45.2-positive PLC � 2  � / �   or PLC � 2 +/+  

genotypes (relative to the CD45.1-expressing PLC � 2 +/+  cells) was calculated 

as follows: 

      

relative migration  

percentage of CD45.2 cells in periton

=

eeum

percentage CD45.2 cells in blood

percentage of CD

⎛
⎝⎜

⎞
⎠⎟

445.1 cells in peritoneum

percentage of CD45.1 cells in bloood

.
⎛
⎝⎜

⎞
⎠⎟  

 Intravital microscopy and whole mount cremaster muscle prepara-

tion.   Bone marrow chimeras were anesthetized using intraperitoneal injec-

tion of ketamine and xylazine and the cremaster muscle was prepared for 

intravital imaging as previously described ( 63 ). Intravital microscopy was 

performed on an upright microscope (BX51; Olympus) with a 40 ×  0.75 NA 

saline immersion objective. The microcirculation was recorded using a charge-

coupled device camera (CF8/1; Kappa) coupled to a recorder (S-VHS; 

Panasonic). Superfusion of the cremaster muscle and local treatment with 

1  μ M fMLP was performed as previously described ( 63 ). Postcapillary venules 

ranged from 25 to 35  μ m in diameter and were observed before and during 

fMLP administration. 

 Geometric and hemodynamic parameters, such as vessel diameter, leu-

kocyte diameter, and vessel segment length, of postcapillary venules were as-

sessed from recorded video tapes using a digital image processing system as 

previously described ( 77 ). Spreading of adherent leukocytes in postcapillary 

venules was assessed by measuring the diameter (height) of attached leuko-

cytes perpendicular to the vessel wall before and at various time points 

 during fMLP superfusion as previously described ( 63 ). Mean blood fl ow 

velocities and wall shear rates ( �  w ) were estimated as previously described ( 63 ). 

Rolling leukocyte fl ux fraction was defi ned as the ratio of rolling leukocytes 

to the total number of leukocytes passing the same vessel per minute ( 78 ). 

Leukocyte adhesion was defi ned as the number of adherent cells per milli-

meters squared of vessel surface area ( 63 ). Systemic leukocyte concentration 

was determined from blood samples taken at the end of the experiment as 

previously described ( 63 ). 

 For whole mount preparations, mouse cremaster muscles were surgi-

cally prepared, as described in the fi rst paragraph of this section, and super-

fused with 1  μ M fMLP in superfusion buff er for 15 min. Thereafter, 

cremaster muscles were fi xed with 4% paraformaldehyde and whole mounts 

were prepared as previously described ( 79 ). Fixed cremaster muscles were 

stained with Giemsa and analyzed for the number of intravascular and peri-

vascular leukocytes using an upright microscope (Axioskop; Carl Zeiss, Inc.) 

through a 100 ×  1.3 NA oil immersion objective. Whole mounts from un-

treated cremaster muscles prepared from both WT and PLC � 2  � / �   bone 

media essentially as previously described ( 10, 11, 73, 75 ) using 100 nM PMA 

(Sigma-Aldrich), 3  μ M fMLP (Sigma-Aldrich), or 50 ng/ml TNF. fMLP-

stimulated cells were pretreated with 10  μ M cytochalasin B (CB; Sigma-

Aldrich) for 10 min before cell activation. Where necessary, the reaction 

was stopped after 10 min (degranulation triggered by CB+fMLP) or 30 min 

(integrin and Fc receptor-mediated degranulation and spreading responses; 

TNF-induced integrin up-regulation). 

 Superoxide release was determined by a real-time cytochrome  c  (Sigma-

Aldrich) reduction test, as previously described ( 51 ), using a multiplate reader 

(Multiskan Ascent; Thermo Fisher Scientifi c) in dual wavelength (550 and 

540 nm) kinetic measurement mode. To simplify the presentation, unstimu-

lated control values were subtracted from those of stimulated samples. Exocy-

tosis of gelatinase was determined by in-gel gelatinase zymography as previously 

described ( 10, 46 ). Cell spreading was assessed after formalin fi xation using an 

inverted microscope (DMI 6000B; Leica) with a 20 ×  phase-contrast objective 

connected to a charge-coupled device camera (DFC480; Leica). 

 Biochemical and signaling studies.   Unstimulated WT and PLC � 2  � / �   

neutrophils were lysed in a 1% Triton X-100 – based lysis buff er ( 11, 73 ), and 

their Triton-soluble fraction were boiled in sample buff er, run on SDS-

PAGE, and immunoblotted with antibodies against PLC � 2 (Q-20; Santa 

Cruz Biotechnology, Inc.), PLC � 1 (1249; Santa Cruz Biotechnology, Inc.), 

or  � -actin (AC-74; Sigma-Aldrich), followed by peroxidase-labeled second-

ary antibodies (GE Healthcare). Where indicated, primary antibodies were 

preincubated with 0.4  μ g/ml of the relevant blocking peptides (Santa Cruz 

Biotechnology, Inc.) before incubation with the immunoblotting mem-

brane. Lysates prepared from thymus or spleen cells of WT mice served for 

comparisons of signal intensity. 

 Purifi ed recombinant Myc-tagged human PLC � 1 and PLC � 2, ex-

pressed in Sf9 insect cells using a baculoviral expression system, were ob-

tained from P. Gierschik (University of Ulm, Ulm, Germany) ( 76 ). For the 

quantifi cation (titration) of PLC � 1 and PLC � 2 expression in neutrophils, 

various amounts of the two recombinant proteins along with murine neutro-

phil lysates were run on SDS-PAGE and immunoblotted using the afore-

mentioned PLC � 1 and PLC � 2 antibodies as well as an antibody against the 

Myc epitope (clone 9E10; Santa Cruz Biotechnology, Inc.). The amino acid 

sequences of the human and murine proteins are practically identical around 

the putative antibody recognition sites in the cases of both PLC �  isoforms, 

whereas there is hardly any similarity between PLC � 1 and PLC � 2 at the 

same sites, which justifi es the use of recombinant human PLC �  isoforms 

along with the aforementioned polyclonal antibodies for the quantifi cation 

of the two murine proteins. 

 For biochemical signaling experiments, neutrophils were plated on a poly-

RGD or immobilized immune complex surface, or they were stimulated by 

50 ng/ml TNF, 1  μ g/ml Pam 3 CSK 4 , 10 ng/ml GM-CSF, or 100 ng/ml 

MIP-2 in Mg 2+ -free media in suspension. After 3-min (MIP-2) or 10-min (all 

other stimuli) incubations, the reaction was stopped and cell lysates were pre-

pared in a Triton X-100 – based lysis buff er ( 11, 73 ), except for immunopre-

cipitation assays where the lysis buff er was supplemented with 0.1% SDS and 

0.5% sodium deoxycholate (RIPA). PLC � 2 was precipitated using the Q-20 

PLC � 2 antibody and captured using a 1:1 mixture of protein A Sepharose 

(Invitrogen) and protein G Agarose (Invitrogen). Triton-soluble whole-cell 

lysates or PLC � 2 immunoprecipitates were immunoblotted with antibodies 

against phosphotyrosine (clone 4G10; Millipore), PLC � 2, p38 MAP kinase 

(C-20; Santa Cruz Biotechnology, Inc.), ERK1/2 (combination of C-16 

[ERK1] and C-14 [ERK2]; Santa Cruz Biotechnology, Inc.), I � -B �  (Cell 

Signaling Technology), or phosphospecifi c antibodies (Cell Signaling Tech-

nology) against the p38 MAP kinase, ERK, and I � -B �  (14D4). 

 In vitro and in vivo migration.   In vitro migration of neutrophils was as-

sessed by a Transwell assay system essentially as previously described ( 10, 11 ). 

In brief, Transwell inserts with polycarbonate fi lters of 3- μ m pore size 

(Corning) were precoated with human fi brinogen, fi lled with suspensions of 

WT or PLC � 2  � / �   murine neutrophils, and inserted in 24-well plate wells 

fi lled with assay media containing varying concentrations of fMLP. The 
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marrow chimeras served as negative controls. All cremaster muscle experi-

ments were independently assessed by two investigators blinded for the 

treatment and genotype of the mice. 

 K/B × N serum transfer arthritis.   Mice carrying the KRN T cell receptor 

transgene ( 25 ) on the C57BL/6 genetic background were mated with NOD 

mice to obtain KRN transgene-positive off springs on the C57BL/6  ×  NOD 

F1 genetic background (K/B × N mice) as well as their transgene-negative 

(B × N) littermates. The presence of the transgene was determined by fl ow 

cytometry as well as by looking for visible signs of arthritis in the K/B × N 

mice. Blood was taken by retroorbital bleeding and sera from transgene-

 positive and transgene-negative mice were pooled separately. 

 Arthritis was induced by intraperitoneal injection of 400  μ l of arthritogenic 

(K/B × N) or control serum into WT or PLC � 2  � / �   bone marrow chimeras or 

intact (nonchimeric) mice, followed by daily assessment of arthritis develop-

ment for 2 wk. Visible clinical signs of arthritis were scored on a 0 – 10 scale by 

two investigators blinded for the origin and treatment of the mice. Ankle thick-

ness was measured by a spring-loaded caliper (Kroeplin). For histological analy-

sis, mice were killed 4 d after serum transfer and their ankle joints were fi xed in 

formalin (Sigma-Aldrich). The joints were then decalcifi ed, embedded in paraf-

fi n, sectioned, and stained with hematoxylin and eosin (Histopathology Llc.). 

Photomicrographs were taken on a microscope (DMI 6000B; Leica). 

 To assess articular function, mice were placed on a custom-made wire grid 

(Charles River Laboratories) with identical wire thickness and spacing to a regular 

wire cage lid. The wire grid was fl ipped upside down and the length of time the 

mice held on to the grid was recorded. This test was performed three times daily 

during the period of 8 – 12 d after the serum injection. The obtained data were 

combined into holding-on curves similar to Kaplan-Meier survival curves. 

 Online supplemental information.   Fig. S1 shows expression level of 

PLC �  isoforms in neutrophils and provides detailed information about PLC �  

antibody specifi city. Fig. S2 shows repopulation of PLC � 2  � / �   bone marrow 

chimeras by donor-derived neutrophils after bone marrow transplantation. 

Fig. S3 shows functional responses of neutrophils from intact (nonchimeric) 

PLC � 2  � / �   mice. Fig. S4 shows CD18-dependent activation of adherent 

neutrophils by various proinfl ammatory agonists. Table S1 shows hemody-

namic and microvascular parameters in fMLP-stimulated cremaster muscle 

venules. Online supplemental material is available at http://www.jem.org/

cgi/content/full/jem.20081859/DC1. 
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